Patents by Inventor Richard T. Behrens

Richard T. Behrens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867828
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: January 9, 2024
    Assignee: Uhnder, Inc.
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Publication number: 20210389414
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Application
    Filed: August 31, 2021
    Publication date: December 16, 2021
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Patent number: 11105890
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: August 31, 2021
    Assignee: Uhnder, Inc.
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Publication number: 20190187246
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Patent number: 9025274
    Abstract: A method of writing data using more than one write head to write to more than one storage media platter surface of a storage device, where one actuator in the storage device controls positions of all of the write heads, includes controlling the position of one of the write heads to a selected radial track location, writing simultaneously to storage media of the storage device at the selected radial track location using a plurality of the write heads, and, during the writing at the selected radial track location, reading servo data using respective read heads associated with each respective one of the plurality of write heads and recording the radial position of the respective heads for the selected radial track location. During reading, the recorded head position for the track of the platter surface to be read is determined, and the read head is served to the recorded head position.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 5, 2015
    Assignee: Marvell International Ltd.
    Inventors: Richard T. Behrens, Alan Armstrong
  • Patent number: 8948708
    Abstract: Radio-frequency (RF) apparatus includes receiver analog circuitry that receives an RF signal and provides at least one digital signal to receiver digital circuitry that functions in cooperation with the receiver analog circuitry. The receiver analog circuitry and the receiver digital circuitry are partitioned so that interference effects between the receiver analog circuitry and the receiver digital circuitry tend to be reduced.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: February 3, 2015
    Assignee: Silicon Laboratories Inc.
    Inventors: Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu Srinivasan
  • Publication number: 20140256279
    Abstract: Radio-frequency (RF) apparatus includes receiver analog circuitry that receives an RF signal and provides at least one digital signal to receiver digital circuitry that functions in cooperation with the receiver analog circuitry. The receiver analog circuitry and the receiver digital circuitry are partitioned so that interference effects between the receiver analog circuitry and the receiver digital circuitry tend to be reduced.
    Type: Application
    Filed: May 21, 2014
    Publication date: September 11, 2014
    Applicant: Silicon Laboratories Inc.
    Inventors: Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu Srinivasan
  • Patent number: 8467483
    Abstract: A radio-frequency apparatus includes an integrated circuit. The integrated circuit includes receiver analog circuitry, receiver digital circuitry, a digital-to-analog converter, and a signal selector. The receiver analog circuitry receives radio-frequency signals, and provides a first digital signal. The receiver digital circuitry receives the first digital signal, and provides a second digital signal. The digital-to-analog converter converts the second digital signal into a first analog signal. The signal selector receives the second digital signal and the first analog signal, and selectively provides one of the second digital signal and the first analog signal as an output signal of the integrated circuit.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: June 18, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: G. Diwakar Vishakhadatta, Donald A. Kerth, Jeffrey W. Scott, Richard T. Behrens, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 8422964
    Abstract: Radio-frequency (RF) apparatus includes receiver analog circuitry that receives an RF signal and provides at least one digital signal to receiver digital circuitry that functions in cooperation with the receiver analog circuitry. The receiver analog circuitry and the receiver digital circuitry are partitioned so that interference effects between the receiver analog circuitry and the receiver digital circuitry tend to be reduced.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: April 16, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu Shankar Srinivasan
  • Patent number: 8224259
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry. The receiver analog circuitry resides within a first integrated circuit and the receiver digital circuitry resides within a second integrated circuit. The second integrated circuit couples to the first integrated circuit via a one-bit digital interface. The receiver analog circuitry receives an RF signal and processes the received RF signal to generate a digital signal. The receiver analog circuitry provides the digital signal to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal with an intermediate frequency (IF) local oscillator (LO) signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: July 17, 2012
    Assignee: Silicon Laboratories Inc.
    Inventors: Richard T. Behrens, Tod Paulus, Mark S. Spurbeck, Vishnu S. Srinivasan, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta
  • Patent number: 8195115
    Abstract: Receiver architectures and related methods are disclosed for high definition (HD) and digital radio FM broadcast receivers. The radio receiver architectures are configured to utilize multiple analog-to-digital converters (ADCs) to handle the digital radio spectrum and can be configured to modify a target IF frequencies depending upon the mode of operation of the receiver. For example, the receiver can include an analog FM reception mode and a digital FM reception mode for which different down-conversions are used for the same analog-plus-digital audio broadcast channel. If desired, the radio broadcast receivers disclosed can be configured so that they only receive digital FM radio content, for example, if the analog FM broadcast was of no interest and/or if the broadcast was all digital.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: June 5, 2012
    Assignee: Silicon Laboratories, Inc.
    Inventors: G. Tyson Tuttle, Dan B. Kasha, Wade R. Gillham, Richard T. Behrens
  • Patent number: 8054918
    Abstract: A wireless communication system is provided that detects a frequency burst (FB) through analysis of the autocorrelation function of received signals. The system can accommodate the relatively large frequency offsets that are associated with less expensive reference frequency crystals. The system employs a multi-mode filter including an FB filter and a channelization filter. In one embodiment, the FB filter is employed until an FB is located and then, once the FB is located, the channelization filter is employed to receive signals.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: November 8, 2011
    Assignee: St-Ericsson S.A.
    Inventors: Marvin L. Vis, Jing Liang, Richard T. Behrens, Samuel Rousselin
  • Publication number: 20110230158
    Abstract: Radio-frequency (RF) apparatus includes receiver analog circuitry that receives an RF signal and provides at least one digital signal to receiver digital circuitry that functions in cooperation with the receiver analog circuitry. The receiver analog circuitry and the receiver digital circuitry are partitioned so that interference effects between the receiver analog circuitry and the receiver digital circuitry tend to be reduced.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 22, 2011
    Inventors: Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu Shankar Srinivasan
  • Publication number: 20110216855
    Abstract: Receiver architectures and related methods are disclosed for high definition (HD) and digital radio FM broadcast receivers. The radio receiver architectures are configured to utilize multiple analog-to-digital converters (ADCs) to handle the digital radio spectrum and can be configured to modify a target IF frequencies depending upon the mode of operation of the receiver. For example, the receiver can include an analog FM reception mode and a digital FM reception mode for which different down-conversions are used for the same analog-plus-digital audio broadcast channel. If desired, the radio broadcast receivers disclosed can be configured so that they only receive digital FM radio content, for example, if the analog FM broadcast was of no interest and/or if the broadcast was all digital.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 8, 2011
    Inventors: G. Tyson Tuttle, Dan B. Kasha, Wade R. Gillham, Richard T. Behrens
  • Patent number: 7957370
    Abstract: A synchronous read channel having a single chip integrated circuit digital portion which provides digital gain control, timing recovery, equalization, digital peak detection, sequence detection, RLL(1,7) encoding and decoding, error-tolerant synchronization and channel quality measurement is disclosed. The integrated circuit accommodates both center sampling and side sampling, and has a high degree of programmability of various pulse shaping and recovery parameters and the ability to provide decoded data using sequence detection or digital peak detection. These characteristics, together with the error-tolerant sync mark detection and the ability to recover data when the sync mark is obliterated, allow a wide variety of retry and recovery strategies to maximize the possibility of data recovery.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: June 7, 2011
    Assignee: Lake Cherokee Hard Drive Technologies, LLC
    Inventors: Richard T. Behrens, Kent D. Anderson, Alan J. Armstrong, Trent Dudley, Bill R. Foland, Neal Glover, Larry D. King
  • Patent number: 7949319
    Abstract: Receiver architectures and related methods are disclosed for high definition (HD) and digital radio FM broadcast receivers. The radio receiver architectures are configured to utilize multiple analog-to-digital converters (ADCs) to handle the digital radio spectrum and can be configured to modify a target IF frequencies depending upon the mode of operation of the receiver. For example, the receiver can include an analog FM reception mode and a digital FM reception mode for which different down-conversions are used for the same analog-plus-digital audio broadcast channel. If desired, the radio broadcast receivers disclosed can be configured so that they only receive digital FM radio content, for example, if the analog FM broadcast was of no interest and/or if the broadcast was all digital.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: May 24, 2011
    Assignee: Silicon Laboratories Inc.
    Inventors: G. Tyson Tuttle, Dan B. Kasha, Wade R. Gillham, Richard T. Behrens
  • Patent number: 7941102
    Abstract: Radio-frequency (RF) apparatus includes receiver analog circuitry that receives an RF signal and provides at least one digital signal to receiver digital circuitry that functions in cooperation with the receiver analog circuitry. The receiver analog circuitry and the receiver digital circuitry are partitioned so that interference effects between the receiver analog circuitry and the receiver digital circuitry tend to be reduced.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 10, 2011
    Assignee: Silicon Laboratories Inc.
    Inventors: Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu Shankar Srinivasan
  • Patent number: 7885255
    Abstract: A synchronous read channel having a single chip integrated circuit digital portion which provides digital gain control, timing recovery, equalization, digital peak detection, sequence detection, RLL(1,7) encoding and decoding, error-tolerant synchronization and channel quality measurement is disclosed. The integrated circuit accommodates both center sampling and side sampling, and has a high degree of programmability of various pulse shaping and recovery parameters and the ability to provide decoded data using sequence detection or digital peak detection. These characteristics, together with the error-tolerant sync mark detection and the ability to recover data when the sync mark is obliterated, allow a wide variety of retry and recovery strategies to maximize the possibility of data recovery.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: February 8, 2011
    Assignee: Lake Cherokee Hard Drive Technologies, LLC
    Inventors: Richard T. Behrens, Kent D. Anderson, Alan J. Armstrong, Trent Dudley, Bill R. Foland, Neal Glover, Larry D. King
  • Publication number: 20100166124
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry. The receiver analog circuitry resides within a first integrated circuit and the receiver digital circuitry resides within a second integrated circuit. The second integrated circuit couples to the first integrated circuit via a one-bit digital interface. The receiver analog circuitry receives an RF signal and processes the received RF signal to generate a digital signal. The receiver analog circuitry provides the digital signal to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal with an intermediate frequency (IF) local oscillator (LO) signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal.
    Type: Application
    Filed: March 1, 2010
    Publication date: July 1, 2010
    Inventors: Richard T. Behrens, Tod Paulus, Mark S. Spurbeck, Vishnu S. Srinivasan, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta
  • Patent number: 7702362
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry. The receiver analog circuitry resides within a first integrated circuit and the receiver digital circuitry resides within a second integrated circuit. The second integrated circuit couples to the first integrated circuit via a one-bit digital interface. The receiver analog circuitry receives an RF signal and processes the received RF signal to generate a digital signal. The receiver analog circuitry provides the digital signal to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal with an intermediate frequency (IF) local oscillator (LO) signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: April 20, 2010
    Assignee: Silicon Laboratories Inc.
    Inventors: Richard T. Behrens, Tod Paulus, Mark S. Spurbeck, Vishnu S. Srinivasan, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta