Patents by Inventor Richard T. Chen

Richard T. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12255123
    Abstract: Embodiments of the present invention are directed to heat transfer arrays, cold plates including heat transfer arrays along with inlets and outlets, and thermal management systems including cold-plates, pumps and heat exchangers. These devices and systems may be used to provide cooling of semiconductor devices or other devices and particularly such devices that produce high heat concentrations. The heat transfer arrays may include microjets, multi-stage microjets, microchannels, fins, wells, wells with flow passages, well with stress relief or stress propagation inhibitors, and integrated microjets and fins.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: March 18, 2025
    Assignee: Microfabrica Inc.
    Inventors: Onnik Yaglioglu, Richard T. Chen, Will J. Tan, Jia Li, Uri Frodis, Nina C. Levy, Dennis R. Smalley
  • Patent number: 11999016
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: June 4, 2024
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Publication number: 20230207426
    Abstract: Embodiments of the present invention are directed to heat transfer arrays, cold plates including heat transfer arrays along with inlets and outlets, and thermal management systems including cold-plates, pumps and heat exchangers. These devices and systems may be used to provide cooling of semiconductor devices or other devices and particularly such devices that produce high heat concentrations. The heat transfer arrays may include microjets, multi-stage microjets, microchannels, fins, wells, wells with flow passages, well with stress relief or stress propagation inhibitors, and integrated microjets and fins.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 29, 2023
    Applicant: Microfabrica Inc.
    Inventors: Onnik Yaglioglu, Richard T. Chen, Will J. Tan, Jia Li, Uri Frodis, Nina C. Levy, Dennis R. Smalley
  • Publication number: 20230201968
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Application
    Filed: April 18, 2022
    Publication date: June 29, 2023
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Publication number: 20230204626
    Abstract: Pin probes and pin probe arrays are provided that allow electric contact to be made with selected electronic circuit components. Some embodiments include one or more compliant pin elements located within a sheath. Some embodiments include pin probes that include locking or latching elements that may be used to fix pin portions of probes into sheaths. Some embodiments provide for fabrication of probes using multi-layer electrochemical fabrication methods.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 29, 2023
    Applicant: Microfabrica Inc.
    Inventors: Richard T. Chen, Ezekiel J. J. Kruglick, Vacit Arat, Daniel I. Feinberg
  • Patent number: 11456235
    Abstract: Embodiments of the present invention are directed to heat transfer arrays, cold plates including heat transfer arrays along with inlets and outlets, and thermal management systems including cold-plates, pumps and heat exchangers. These devices and systems may be used to provide cooling of semiconductor devices and particularly such devices that produce high heat concentrations. The heat transfer arrays may include microjets, microchannels, fins, and even integrated microjets and fins.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: September 27, 2022
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Will J. Tan
  • Patent number: 11112233
    Abstract: Aspects of the subject technology relate to an apparatus for self-mixing particulate-matter sensing using a vertical-cavity surface-emitting laser (VCSEL) with extrinsic photodiodes. The apparatus includes a dual-emitting light source disposed on a first chip and to generate a first light beam and a second light beam. The first light beam illuminates a particulate matter (PM), and a light detector extrinsic to the first chip measures the second light beam and variations of the second light beam and generates a self-mixing signal. The variations of the second light beam are caused by a back-scattered light resulting from back-scattering of the first light beam from the PM. The light detector is coupled to the dual-emitting light source. The direction of the second light beam is opposite to the direction of the first light beam, and the second light beam is directed to a sensitive area of the light detector.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: September 7, 2021
    Assignee: Apple Inc.
    Inventors: Mehmet Mutlu, Michael K. Brown, Wesley S. Smith, Orit A. Shamir, Richard T. Chen, Mark T. Winkler, Miaolei Yan, Richard Yeh
  • Patent number: 10957624
    Abstract: Embodiments of the present invention are directed to heat transfer arrays, cold plates including heat transfer arrays along with inlets and outlets, and thermal management systems including cold-plates, pumps and heat exchangers. These devices and systems may be used to provide cooling of semiconductor devices and particularly such devices that produce high heat concentrations. The heat transfer arrays may include microjets, microchannels, fins, and even integrated microjets and fins.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: March 23, 2021
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Will J. Tan
  • Publication number: 20210080245
    Abstract: Aspects of the subject technology relate to an apparatus for self-mixing particulate-matter sensing using a vertical-cavity surface-emitting laser (VCSEL) with extrinsic photodiodes. The apparatus includes a dual-emitting light source disposed on a first chip and to generate a first light beam and a second light beam. The first light beam illuminates a particulate matter (PM), and a light detector extrinsic to the first chip measures the second light beam and variations of the second light beam and generates a self-mixing signal. The variations of the second light beam are caused by a back-scattered light resulting from back-scattering of the first light beam from the PM. The light detector is coupled to the dual-emitting light source. The direction of the second light beam is opposite to the direction of the first light beam, and the second light beam is directed to a sensitive area of the light detector.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Mehmet MUTLU, Michael K. BROWN, Wesley S. SMITH, Orit A. SHAMIR, Richard T. CHEN, Mark T. WINKLER, Miaolei YAN, Richard YEH
  • Patent number: 10939934
    Abstract: The present disclosure relates generally to the field of tissue removal and more particularly to methods and devices for use in medical applications involving selective tissue removal. One exemplary method includes the steps of providing a tissue cutting instrument capable of distinguishing between target tissue to be removed and non-target tissue, urging the instrument against the target tissue and the non-target tissue, and allowing the instrument to cut the target tissue while automatically avoiding cutting of non-target tissue. Various tools for carrying out this method are also described.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: March 9, 2021
    Assignee: Microfabrica Inc.
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen, Gregory P. Schmitz, Eric C. Miller, Ming Ting Wu, Arun S. Veeramani, Juan Diego Perea
  • Patent number: 10877067
    Abstract: Pin probes and pin probe arrays are provided that allow electric contact to be made with selected electronic circuit components. Some embodiments include one or more compliant pin elements located within a sheath. Some embodiments include pin probes that include locking or latching elements that may be used to fix pin portions of probes into sheaths. Some embodiments provide for fabrication of probes using multi-layer electrochemical fabrication methods.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: December 29, 2020
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Ezekiel J. J. Kruglick, Vacit Arat, Daniel I. Feinberg
  • Publication number: 20200335425
    Abstract: Embodiments of the present invention are directed to heat transfer arrays, cold plates including heat transfer arrays along with inlets and outlets, and thermal management systems including cold-plates, pumps and heat exchangers. These devices and systems may be used to provide cooling of semiconductor devices and particularly such devices that produce high heat concentrations. The heat transfer arrays may include microjets, microchannels, fins, and even integrated microjets and fins.
    Type: Application
    Filed: April 3, 2020
    Publication date: October 22, 2020
    Applicant: Microfabrica Inc.
    Inventors: Richard T. Chen, Will J. Tan
  • Patent number: 10806557
    Abstract: Embodiments of the present invention are directed to microscale and millimeter scale tissue scaffolding structures that may be static or expandable and which may be formed of biocompatible metals or other materials that may be coated to become biocompatible. Scaffold structures may include features for holding desired biological or physiological materials to enhance selected tissue growth. Scaffolding devices may be formed by multi-layer, multi-material electrochemical fabrication methods.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: October 20, 2020
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Eric C. Miller
  • Patent number: 10788512
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such probe or cantilever structures. In some embodiments, for example, cantilever probes have extended base structures, slide in mounting structures, multi-beam configurations, offset bonding locations to allow closer positioning of adjacent probes, compliant elements with tensional configurations, improved over travel, improved compliance, improved scrubbing capability, and/or the like.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: September 29, 2020
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Ezekiel J. J. Kruglick, Christopher A. Bang, Dennis R. Smalley, Pavel B. Lembrikov
  • Patent number: 10665530
    Abstract: Embodiments of the present invention are directed to heat transfer arrays, cold plates including heat transfer arrays along with inlets and outlets, and thermal management systems including cold-plates, pumps and heat exchangers. These devices and systems may be used to provide cooling of semiconductor devices and particularly such devices that produce high heat concentrations. The heat transfer arrays may include microjets, microchannels, fins, and even integrated microjets and fins.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: May 26, 2020
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Will J. Tan
  • Patent number: 10492822
    Abstract: Various embodiments of a tissue cutting device are described, such as a device with an elongate tube having a proximal end and a distal end and a central axis extending from the proximal end to the distal end; a first annular element at the distal end of the elongate tube, the first annular element having a flat portion at its distal end perpendicular to the central axis; and a second annular element at the distal end of the elongate tube and concentric with the first annular element, the second annular element having a flat portion at its distal end perpendicular to the central axis, at least one of the first or second annular elements rotatable about the central axis, the rotation causing the first annular element and the second annular element to pass each other to shear tissue.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: December 3, 2019
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Ming-Ting Wu, Arun Veeramani, Vacit Arat, Gregory P. Schmitz
  • Patent number: 10416192
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such probe or cantilever structures. In some embodiments, for example, cantilever probes have extended base structures, slide in mounting structures, multi-beam configurations, offset bonding locations to allow closer positioning of adjacent probes, compliant elements with tensional configurations, improved over travel, improved compliance, improved scrubbing capability, and/or the like.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: September 17, 2019
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Ezekiel J. J. Kruglick, Christopher A. Bang, Dennis R. Smalley, Pavel B. Lembrikov
  • Publication number: 20190229038
    Abstract: Embodiments of the present invention are directed to heat transfer arrays, cold plates including heat transfer arrays along with inlets and outlets, and thermal management systems including cold-plates, pumps and heat exchangers. These devices and systems may be used to provide cooling of semiconductor devices and particularly such devices that produce high heat concentrations. The heat transfer arrays may include microjets, microchannels, fins, and even integrated microjets and fins.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Applicant: Microfabrica Inc.
    Inventors: Richard T. Chen, Will J. Tan
  • Publication number: 20190227099
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such probe or cantilever structures. In some embodiments, for example, cantilever probes have extended base structures, slide in mounting structures, multi-beam configurations, offset bonding locations to allow closer positioning of adjacent probes, compliant elements with tensional configurations, improved over travel, improved compliance, improved scrubbing capability, and/or the like.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Applicant: Microfabrica Inc.
    Inventors: Richard T. Chen, Ezekiel J. J. Kruglick, Christopher A. Bang, Dennis R. Smalley, Pavel B. Lembrikov
  • Publication number: 20190204354
    Abstract: Pin probes and pin probe arrays are provided that allow electric contact to be made with selected electronic circuit components. Some embodiments include one or more compliant pin elements located within a sheath. Some embodiments include pin probes that include locking or latching elements that may be used to fix pin portions of probes into sheaths. Some embodiments provide for fabrication of probes using multi-layer electrochemical fabrication methods.
    Type: Application
    Filed: October 26, 2018
    Publication date: July 4, 2019
    Applicant: Microfabrica Inc.
    Inventors: Richard T. Chen, Ezekiel J. J. Kruglick, Vacit Arat, Daniel I. Feinberg