Patents by Inventor Richard T. Hallen
Richard T. Hallen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11661552Abstract: A hydrothermal liquefaction (HTL) system can comprise a biomass slurry source, a first pump in fluid communication with the slurry source and configured to pressurize a biomass slurry stream from the slurry source to a first pressure, a first heat exchanger in fluid communication with the first pump and configured to heat a slurry stream received from the first pump to a first temperature, a second pump in fluid communication with the first heat exchanger and configured to pressurize a slurry stream received from the first heat exchanger to a second pressure higher than the first pressure, a second heat exchanger in fluid communication with the second pump and configured to heat a slurry stream received from the second pump to a second temperature higher than the first temperature, and a HTL reactor configured to produce biocrude from a slurry stream received from the second heat exchanger.Type: GrantFiled: March 14, 2022Date of Patent: May 30, 2023Assignee: Battelle Memorial InstituteInventors: Michael R. Thorson, Lesley J. Snowden-Swan, Andrew J. Schmidt, Todd R. Hart, Justin M. Billing, Daniel B. Anderson, Richard T. Hallen
-
Publication number: 20220195308Abstract: A hydrothermal liquefaction (HTL) system can comprise a biomass slurry source, a first pump in fluid communication with the slurry source and configured to pressurize a biomass slurry stream from the slurry source to a first pressure, a first heat exchanger in fluid communication with the first pump and configured to heat a slurry stream received from the first pump to a first temperature, a second pump in fluid communication with the first heat exchanger and configured to pressurize a slurry stream received from the first heat exchanger to a second pressure higher than the first pressure, a second heat exchanger in fluid communication with the second pump and configured to heat a slurry stream received from the second pump to a second temperature higher than the first temperature, and a HTL reactor configured to produce biocrude from a slurry stream received from the second heat exchanger.Type: ApplicationFiled: March 14, 2022Publication date: June 23, 2022Applicant: Battelle Memorial InstituteInventors: Michael R. Thorson, Lesley J. Snowden-Swan, Andrew J. Schmidt, Todd R. Hart, Justin M. Billing, Daniel B. Anderson, Richard T. Hallen
-
Patent number: 11279882Abstract: A hydrothermal liquefaction (HTL) system can comprise a biomass slurry source, a first pump in fluid communication with the slurry source and configured to pressurize a biomass slurry stream from the slurry source to a first pressure, a first heat exchanger in fluid communication with the first pump and configured to heat a slurry stream received from the first pump to a first temperature, a second pump in fluid communication with the first heat exchanger and configured to pressurize a slurry stream received from the first heat exchanger to a second pressure higher than the first pressure, a second heat exchanger in fluid communication with the second pump and configured to heat a slurry stream received from the second pump to a second temperature higher than the first temperature, and a HTL reactor configured to produce biocrude from a slurry stream received from the second heat exchanger.Type: GrantFiled: January 10, 2020Date of Patent: March 22, 2022Assignee: Battelle Memorial InstituteInventors: Michael R. Thorson, Lesley J. Snowden-Swan, Andrew J. Schmidt, Todd R. Hart, Justin M. Billing, Daniel B. Anderson, Richard T. Hallen
-
Publication number: 20210214633Abstract: A hydrothermal liquefaction (HTL) system can comprise a biomass slurry source, a first pump in fluid communication with the slurry source and configured to pressurize a biomass slurry stream from the slurry source to a first pressure, a first heat exchanger in fluid communication with the first pump and configured to heat a slurry stream received from the first pump to a first temperature, a second pump in fluid communication with the first heat exchanger and configured to pressurize a slurry stream received from the first heat exchanger to a second pressure higher than the first pressure, a second heat exchanger in fluid communication with the second pump and configured to heat a slurry stream received from the second pump to a second temperature higher than the first temperature, and a HTL reactor configured to produce biocrude from a slurry stream received from the second heat exchanger.Type: ApplicationFiled: January 10, 2020Publication date: July 15, 2021Applicant: Battelle Memorial InstituteInventors: Michael R. Thorson, Lesley J. Snowden-Swan, Andrew J. Schmidt, Todd R. Hart, Justin M. Billing, Daniel B. Anderson, Richard T. Hallen
-
Patent number: 10167430Abstract: Embodiments of a method for producing bio-oil include hydrothermal liquefaction of a biomass (e.g., a lignocellulosic biomass) feedstock to provide a process stream comprising crude oil and an aqueous fraction. The process stream is catalytically upgraded by contact with a sulfided-ruthenium catalyst, in the absence of added hydrogen, at a temperature and pressure effective to reduce an oxygen content of the crude oil, reduce a nitrogen content of the crude oil, reduce a total acid number of the crude oil, increase a H:C mole ratio of the crude oil, reduce a density of the crude oil, reduce a moisture content of the crude oil, reduce viscosity of the crude oil, or any combination thereof, thereby producing an upgraded oil and an upgraded aqueous fraction, which are subsequently separated. The catalytic upgrading process may be a plug-flow process and/or may be performed at or near liquefaction conditions.Type: GrantFiled: June 28, 2016Date of Patent: January 1, 2019Assignee: Battelle Memorial InstituteInventors: Todd R. Hart, Douglas C. Elliott, Andrew J. Schmidt, Richard T. Hallen
-
Patent number: 10005974Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.Type: GrantFiled: August 18, 2017Date of Patent: June 26, 2018Assignee: Battelle Memorial InstituteInventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
-
Patent number: 9932531Abstract: Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.Type: GrantFiled: April 24, 2017Date of Patent: April 3, 2018Assignee: Battelle Memorial InstituteInventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
-
Publication number: 20170369789Abstract: Embodiments of a method for producing bio-oil include hydrothermal liquefaction of a biomass (e.g., a lignocellulosic biomass) feedstock to provide a process stream comprising crude oil and an aqueous fraction. The process stream is catalytically upgraded by contact with a sulfided-ruthenium catalyst, in the absence of added hydrogen, at a temperature and pressure effective to reduce an oxygen content of the crude oil, reduce a nitrogen content of the crude oil, reduce a total acid number of the crude oil, increase a H:C mole ratio of the crude oil, reduce a density of the crude oil, reduce a moisture content of the crude oil, reduce viscosity of the crude oil, or any combination thereof, thereby producing an upgraded oil and an upgraded aqueous fraction, which are subsequently separated. The catalytic upgrading process may be a plug-flow process and/or may be performed at or near liquefaction conditions.Type: ApplicationFiled: June 28, 2016Publication date: December 28, 2017Inventors: Todd R. Hart, Douglas C. Elliott, Andrew J. Schmidt, Richard T. Hallen
-
Publication number: 20170369804Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.Type: ApplicationFiled: August 18, 2017Publication date: December 28, 2017Applicant: Battelle Memorial InstituteInventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
-
Patent number: 9771533Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.Type: GrantFiled: October 30, 2014Date of Patent: September 26, 2017Assignee: Battelle Memorial InstituteInventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
-
Publication number: 20170218283Abstract: Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.Type: ApplicationFiled: April 24, 2017Publication date: August 3, 2017Applicant: Battelle Memorial InstituteInventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
-
Patent number: 9663416Abstract: Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.Type: GrantFiled: October 30, 2014Date of Patent: May 30, 2017Assignee: Battelle Memorial InstituteInventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
-
Patent number: 9388364Abstract: Liquefaction processes are provided that can include: providing a biomass slurry solution having a temperature of at least 300° C. at a pressure of at least 2000 psig; cooling the solution to a temperature of less than 150° C.; and depressurizing the solution to release carbon dioxide from the solution and form at least part of a bio-oil foam. Liquefaction processes are also provided that can include: filtering the biomass slurry to remove particulates; and cooling and depressurizing the filtered solution to form the bio-oil foam. Liquefaction systems are provided that can include: a heated biomass slurry reaction zone maintained above 300° C. and at least 2000 psig and in continuous fluid communication with a flash cooling/depressurization zone maintained below 150° C. and between about 125 psig and about atmospheric pressure. Liquefaction systems are also provided that can include a foam/liquid separation system.Type: GrantFiled: June 12, 2015Date of Patent: July 12, 2016Assignee: Battelle Memorial InstituteInventors: Andrew J. Schmidt, Todd R. Hart, Justin M. Billing, Gary D. Maupin, Richard T. Hallen, Daniel B. Anderson
-
Publication number: 20160194572Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.Type: ApplicationFiled: October 30, 2014Publication date: July 7, 2016Applicant: BATTELLE MEMORIAL INSTITUTEInventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthi Ramasamy
-
Publication number: 20160194257Abstract: Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.Type: ApplicationFiled: October 30, 2014Publication date: July 7, 2016Applicant: BATTELLE MEMORIAL INSTITUTEInventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthi Ramasamy
-
Patent number: 8882990Abstract: Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.Type: GrantFiled: September 14, 2012Date of Patent: November 11, 2014Assignee: Battelle Memorial InstituteInventors: Richard T. Hallen, Karl O. Albrecht, Heather M. Brown, James F. White
-
Patent number: 8742144Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.Type: GrantFiled: June 30, 2011Date of Patent: June 3, 2014Assignee: Battelle Memorial InstituteInventors: Michael A. Lilga, Richard T. Hallen, James F. White, Michel J. Gray
-
Patent number: 8388829Abstract: Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.Type: GrantFiled: September 14, 2012Date of Patent: March 5, 2013Assignee: Battelle Memorial InstituteInventors: Richard T. Hallen, Karl O. Albrecht, Heather M. Brown, James F. White
-
Patent number: 8367851Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.Type: GrantFiled: June 30, 2011Date of Patent: February 5, 2013Assignee: Battelle Memorial InstituteInventors: Michael A. Lilga, Richard T. Hallen, James F. White, Michel J. Gray
-
Patent number: 8366907Abstract: Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.Type: GrantFiled: August 2, 2010Date of Patent: February 5, 2013Assignee: Battelle Memorial InstituteInventors: Richard T. Hallen, Karl O. Albrecht, Heather M. Brown, James F. White