Patents by Inventor Richard T. Stone

Richard T. Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120041528
    Abstract: A shield located within an implantable medical lead may be terminated in various ways at a metal connector. The shield may be terminated by various joints including butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. The shield may terminate with a physical and electrical connection to a single metal connector. The shield may terminate with a physical and electrical connection by passing between an overlapping pair of inner and outer metal connectors. The metal connectors may include features such as teeth or threads that penetrate the insulation layers of the lead. The shield may terminate with a physical and electrical connection by exiting a jacket of a lead adjacent to a metal connector and lapping onto the metal connector.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 16, 2012
    Applicant: Medtronic, Inc
    Inventors: Bruce R. Mehdizadeh, Brian T. Stolz, Michael R. Klardie, Michael J. Kern, James M. Olsen, Richard T. Stone, Chad Q. Cai, Spencer M. Bondhus, Mark J. Conroy, Timothy R. Abraham
  • Publication number: 20120035616
    Abstract: An implantable medical lead has a torsional stiffness and is rotationally coupled to a stylet. Applying rotation directly to the lead in turn causes rotation of the stylet. Where the stylet has a bent tip for purposes of steering the lead, the rotation applied to the lead rotates the bent tip so that the lead can be steered by rotating the lead rather than rotating a hub of the stylet. The rotational coupling may be achieved through one or more features provided for the lead and/or the stylet, such as a feature within a lumen of the lead that mates to a feature along the stylet or a feature of the stylet hub that engages the proximal end of the lead. The torsional stiffness of the lead may be provided by adding a feature within the lead body, such as a braided metal wire or an overlapping foil.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 9, 2012
    Applicant: Medtronic, Inc.
    Inventors: James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer M. Boudhus, Mark J. Conway, Timothy R. Abraham
  • Publication number: 20120035695
    Abstract: Grounding of a shield that is located in an implantable medical lead may be done in many ways. The ground pathway may couple to the shield at a point that is outside of a header of an implantable medical device to which the implantable medical lead is attached. The ground pathway may couple to the shield at a point that is within the header of the implantable medical device. The ground pathway may terminate at the metal can of the implantable medical device. As another option, the ground pathway may terminate at a ground plate that is mounted to the header. The ground pathway may be direct current coupled from the shield to the can or ground plate. Alternatively, the ground pathway may include one or more capacitive couplings that provide a pathway for induced radio frequency current.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 9, 2012
    Inventors: James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer M. Bondhus, Mark J. Conroy, Timothy R. Abraham
  • Publication number: 20120035697
    Abstract: Implantable medical leads include a shield that is guarded at a termination by having a first portion and second portion of the shield, where the first portion is between a termination of the shield at the second portion and an inner insulation layer surrounding the filars. The first portion may reduce the coupling of RF energy from the termination of the shield at the second portion to the filars. The first and second portions may be part of a continuous shield, where the first and second portions are separated by an inversion of the shield. The first and second portions may instead be separate pieces. The first portion may be noninverted residing between the termination at the second portion and inner layers, or the first portion may be inverted to create first and second sub-portions. The shield termination at the second portion is between the first and second sub-portions.
    Type: Application
    Filed: April 28, 2010
    Publication date: February 9, 2012
    Inventors: Richard T. Stone, Mark J. Conroy, Wanzhan Liu, Gary W. Salminen
  • Publication number: 20120035696
    Abstract: A shield located within an implantable medical lead may be terminated in various ways. The shield may be terminated by butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. For lap joints, a portion of an outer insulation layer may be removed and a replacement outer insulation layer is positioned in place of the removed outer insulation layer, where the replacement layer extends beyond an inner insulation layer and the shield. The replacement layer may also lap onto a portion of the insulation extension. Barbs may be located between the replacement layer and the inner insulation layer or the insulation extension. The shield wires have ends at the termination point that may be folded over individually or may be capped with a ring located within one of the insulation layers of the jacket.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 9, 2012
    Applicant: Medtronic, Inc.
    Inventors: Michael J. Kern, James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer M. Bondhus, Mark J. Conroy, Timothy R. Abraham, Brian T. Stolz
  • Publication number: 20120035694
    Abstract: Grounding of a shield that is located in an implantable medical lead may be done in many ways. The shield may be grounded directly to tissue from the lead body at one or more points along the lead body. The pathway for grounding may be a direct current pathway or be capacitively coupled. The pathway for grounding may utilize an exposed or nearly exposed shield at one or more points along the lead body. A jacket forming the lead body may have an outer layer removed at these points to provide the RF pathway to ground. Alternatively, the jacket may be doped with conductive particles at these points. Metal conductors such as ring electrodes and/or lead anchors may be attached to the lead at one or more points to provide the RF pathway to ground.
    Type: Application
    Filed: April 28, 2010
    Publication date: February 9, 2012
    Applicant: Medtronic, Inc.
    Inventors: James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q Cai, Spencer M. Bondhus, Mark J. Conroy, Timothy R. Abraham
  • Patent number: 8000808
    Abstract: A medical lead having a conductor assembly and a segmented electrode assembly. The segmented electrode assembly includes a conductive segment electrically coupled to a conductor of the conductor assembly. A passageway is positioned between an inner surface and outer surface of the conductive segment. An electrically insulating material extends through the first passageway and into a gap adjacent the conductive segment. A segmented electrode assembly is also provided. The segmented electrode assembly includes a conductive segment having a passageway between an inner surface and outer surface of the conductive segment. An electrically insulating material extends through the passageway and into a gap adjacent the conductive segment.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: August 16, 2011
    Assignee: Medtronic, Inc.
    Inventors: Michael Hegland, Richard T. Stone
  • Patent number: 7931643
    Abstract: A miniature drug delivery pump utilizes a shape memory Ni—Ti alloy. A flow restrictor is provided and the pump is refillable.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: April 26, 2011
    Assignee: Medtronic, Inc.
    Inventors: James M. Olsen, Mark S. Lent, James G. Skakoon, Richard T. Stone, Laetitia Mayor, Dale F. Seeley, Michael T. Hegland
  • Publication number: 20110061153
    Abstract: Swimming goggles that are shaped by approximately profiling the goggles to the swimmer's head resulting in the goggles having a minimal tendency to be pulled off or pulled ajar from the swimmer's head by hydrodynamic forces while exhibiting minimal hydrodynamic drag. Optical arrays molded into the lenses of the goggles permit normal vision both underwater and above the water.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 17, 2011
    Inventor: Richard T. Stone
  • Publication number: 20110056076
    Abstract: A method of manufacturing a segmented electrode assembly. An electrically conducting tube is coupled to an electrically insulating material. The tube is generally cylindrical and hollow and defines one or more gaps at a first axial position. The tube also includes one or more bridges located at a second axial position. The method includes removing at least a portion of the bridge resulting in a segmented electrode assembly having at least one segment. A number embodiments of making a tube are also provided. In another embodiment a method of manufacturing a medical lead using a segmented electrode assembly is provided.
    Type: Application
    Filed: November 17, 2010
    Publication date: March 10, 2011
    Applicant: MEDTRONIC, INC.
    Inventors: Michael Hegland, Richard T. Stone
  • Publication number: 20100324570
    Abstract: The disclosure describes an introducer for facilitating implantation of therapy elements into a patient. The introducer has an elongated body that defines a lumen for advancement of a therapy element to an implant site, and includes a curved portion medially located between substantially straight proximal and distal portions. As an example, the shape of the introducer may allow a clinician to more easily, and without substantially damaging surrounding tissue, find the correct tissue depth and follow that tissue depth to the implant site. For example, the introducer may facilitate implantation of a therapy element within or between desired layers of tissue of the patient. In some embodiments, fluid may be injected through the introducer to create a space within the tissue to implant the therapy element. Fluid may also be evacuated through the introducer prior to implantation.
    Type: Application
    Filed: August 27, 2010
    Publication date: December 23, 2010
    Inventors: Ethan A. Rooney, Gary W. King, Thomas E. Cross, JR., Richard T. Stone
  • Patent number: 7848802
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a concentric axial view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: December 7, 2010
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 7826902
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates a stimulation field on the display to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to anatomical regions of the patient.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: November 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Patent number: 7822483
    Abstract: The disclosure describes a method and system that generates an electrical field model of defined stimulation therapy and displays the electrical field model to a user via a user interface. The electrical field model is generated based upon a patient anatomy and stimulation parameters to illustrate which areas of a patient anatomical region will be covered by the electrical field during therapy. In addition, a neuron model may be applied to the electrical field model to generate an activation field model. The activation field model indicates which neurons will be activated by the electrical field in the anatomical region. These field models may be used by a clinician to determine effective therapy prior to stimulation delivery. In particular, the field models may be beneficial when programming non axi-symmetric, or three-dimensional (3D), leads which allow greater flexibility in creating stimulation fields.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: October 26, 2010
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Patent number: 7792591
    Abstract: The disclosure describes an introducer for facilitating implantation of therapy elements into a patient. The introducer has an elongated body that defines a lumen for advancement of a therapy element to an implant site, and includes a curved portion medially located between substantially straight proximal and distal portions. As an example, the shape of the introducer may allow a clinician to more easily, and without substantially damaging surrounding tissue, find the correct tissue depth and follow that tissue depth to the implant site. For example, the introducer may facilitate implantation of a therapy element within or between desired layers of tissue of the patient. In some embodiments, fluid may be injected through the introducer to create a space within the tissue to implant the therapy element. Fluid may also be evacuated through the introducer prior to implantation.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: September 7, 2010
    Assignee: Medtronic, Inc.
    Inventors: Ethan A. Rooney, Gary W. King, Thomas E. Cross, Jr., Richard T. Stone
  • Patent number: 7761985
    Abstract: A method of manufacturing a segmented electrode assembly. An electrically conducting tube is coupled to an electrically insulating material. The tube is generally cylindrical and hollow and defines one or more gaps at a first axial position. The tube also includes one or more bridges located at a second axial position. The method includes removing at least a portion of the bridge resulting in a segmented electrode assembly having at least one segment. A number embodiments of making a tube are also provided. In another embodiment a method of manufacturing a medical lead using a segmented electrode assembly is provided.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: July 27, 2010
    Assignee: Medtronic, Inc.
    Inventors: Michael Hegland, Richard T. Stone
  • Publication number: 20100145426
    Abstract: An electrical lead including a conductor assembly, an electrode, and a thermally sensitive material. The conductor assembly has one or more conductors. The electrode is in electrical communication with one of the conductors and has an outer contact adapted for contacting adjacent body tissue of a patient. The thermally sensitive material is electrically connected between the one conductor and the electrode outer contact, and is configured to exhibit high impedance in the presence of currents considered unsafe to the patient, thereby preventing the unsafe currents from flowing through the thermally sensitive material and through the electrode outer contact potentially causing the adjacent body tissue to increase in temperature to an unsafe level. The unsafe currents cause the thermally sensitive material to increase in temperature, thereby causing the material to transition to a high impedance state.
    Type: Application
    Filed: February 19, 2010
    Publication date: June 10, 2010
    Applicant: Medtronic, Inc.
    Inventor: Richard T. Stone
  • Patent number: 7711436
    Abstract: An electrical lead including a conductor assembly, an electrode, and a thermally sensitive material. The conductor assembly has one or more conductors. The electrode is in electrical communication with one of the conductors and has an outer contact adapted for contacting adjacent body tissue of a patient. The thermally sensitive material is electrically connected between the one conductor and the electrode outer contact, and is configured to exhibit high impedance in the presence of currents considered unsafe to the patient, thereby preventing the unsafe currents from flowing through the thermally sensitive material and through the electrode outer contact potentially causing the adjacent body tissue to increase in temperature to an unsafe level. The unsafe currents cause the thermally sensitive material to increase in temperature, thereby causing the material to transition to a high impedance state.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 4, 2010
    Assignee: Medtronic, Inc.
    Inventor: Richard T. Stone
  • Patent number: 7676273
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. A user interface of a programmer allows a user to define stimulation therapy by interacting with one or more representations of the lead that delivers the therapy. The disclosure also contemplates selecting stimulation parameters to satisfy a user defined stimulation field by selecting one or more volumetric stimulation templates that best fit the stimulation field. The user interface may display the stimulation templates in relation to different perspectives of a lead and the stimulation field. Use of stimulation templates may simplify the determination of stimulation parameters in response to any of a variety of types of user definition of a stimulation field.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: March 9, 2010
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 7668601
    Abstract: Medical leads having at least one segmented row of electrodes, as well as at least one ring electrode that extends substantially completely around the periphery of the lead, are described. The electrodes in a segmented row extend around only a portion of the periphery of the lead, rather than substantially around the entire periphery. The electrodes in a segmented row may be distributed at respective locations around the periphery of the lead and separated by insulating material. The ring electrodes and segmented rows are located at respective axial positions. For example, in some embodiments, a plurality of segmented rows, such as two rows having three electrodes each, are located between two ring electrodes. Such a lead may, for example, provide a variety of stimulation modalities because of localized stimulation capabilities.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: February 23, 2010
    Assignee: Medtronic, Inc.
    Inventors: Michael T. Hegland, James M. Olsen, Gabriela C. Miyazawa, Richard T. Stone