Patents by Inventor Richard Thayre Smith

Richard Thayre Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9784657
    Abstract: In some embodiments, an apparatus includes a base structure and a tube. The tube has a first tube portion, a second tube portion substantially parallel to the first tube portion, an inlet portion, and an outlet portion. The tube is configured to have a material pass from the inlet portion to the outlet portion. The apparatus further includes a drive element in contact with the tube. The drive element is configured to vibrate the tube such that the first tube portion conducts vibrational movements out of phase with vibrational movements of the second tube portion. The apparatus also includes a sensing element, at least a portion of which is in contact with the tube. The sensing element is configured to sense deflections of the first tube portion and the second tube portion such that at least one property of the material is determined.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: October 10, 2017
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Michael William Putty, Richard Thayre Smith, Nader Najafi
  • Publication number: 20150114137
    Abstract: In some embodiments, an apparatus includes a base structure and a tube. The tube has a first tube portion, a second tube portion substantially parallel to the first tube portion, an inlet portion, and an outlet portion. The tube is configured to have a material pass from the inlet portion to the outlet portion. The apparatus further includes a drive element in contact with the tube. The drive element is configured to vibrate the tube such that the first tube portion conducts vibrational movements out of phase with vibrational movements of the second tube portion. The apparatus also includes a sensing element, at least a portion of which is in contact with the tube. The sensing element is configured to sense deflections of the first tube portion and the second tube portion such that at least one property of the material is determined.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Michael William Putty, Richard Thayre Smith, Nader Najafi
  • Patent number: 8695418
    Abstract: Fluidic systems and methods of determining properties of fluids flowing therein. The fluidic systems and methods make use of a micromachined device that determines at least one property of the fluid within the system. The micromachined device includes a base structure on a substrate and a tube structure extending from the base structure and spaced apart from a surface of the substrate. The tube structure has at least one pair of geometrically parallel tube portions substantially lying in a plane, and at least one continuous internal passage defined at least in part within the parallel tube portions. A drive element induces vibrational movement of the tube structure in the plane of the tube structure and induces resonant vibrational movements in the tube portions in the plane of the tube structure. A sensing element senses deflections of each tube portion in the plane of the tube structure.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 15, 2014
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Douglas Ray Sparks, Michael W. Putty, Nader Najafi, Richard Thayre Smith
  • Patent number: 8408073
    Abstract: A microfluidic device and sensing method that utilize a resonating tube configured to have sufficient sensitivity to be capable of sensing the volume of a gas present as bubbles in a liquid or the flow rate and/or density of a gas or gas mixture flowing through the tube. The tube has a freestanding tube portion supported above a surface of a substrate so as to be capable of vibrating in a plane normal to the surface of the substrate. As a gas-containing fluid flows through an internal passage of the tube, a drive signal vibrates the freestanding tube portion at a resonant frequency thereof. Coriolis-induced deflections of the freestanding tube portion are sensed relative to the substrate to produce an output corresponding to the sensed deflections, and the drive signal and/or the output are assessed to determine the volume, density and/or flow rate of the gas of the gas-containing fluid.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: April 2, 2013
    Assignee: Integrated Sensing Systems Inc.
    Inventors: Douglas Ray Sparks, Richard Thayre Smith, Nader Najafi
  • Publication number: 20120260718
    Abstract: A microfluidic device and sensing method that utilize a resonating tube configured to have sufficient sensitivity to be capable of sensing the volume of a gas present as bubbles in a liquid or the flow rate and/or density of a gas or gas mixture flowing through the tube. The tube has a freestanding tube portion supported above a surface of a substrate so as to be capable of vibrating in a plane normal to the surface of the substrate. As a gas-containing fluid flows through an internal passage of the tube, a drive signal vibrates the freestanding tube portion at a resonant frequency thereof. Coriolis-induced deflections of the freestanding tube portion are sensed relative to the substrate to produce an output corresponding to the sensed deflections, and the drive signal and/or the output are assessed to determine the volume, density and/or flow rate of the gas of the gas-containing fluid.
    Type: Application
    Filed: October 11, 2011
    Publication date: October 18, 2012
    Applicant: INTEGRATED SENSING SYSTEMS INC.
    Inventors: Douglas Ray Sparks, Richard Thayre Smith, Nader Najafi
  • Patent number: 8272274
    Abstract: A microelectromechanical system (MEMS) device and a method for operating the device to determine at least one property of a fluid. The device includes a base on a substrate and a tube structure extending from the base and spaced apart from a surface of the substrate. The tube structure includes at least one tube portion and more preferably at least a pair of parallel tube portions substantially lying in a plane, at least one continuous internal passage defined at least in part within the parallel tube portions, and an inlet and outlet of the internal passage fluidically connected to the base. A drive element is operable to induce vibrational movement in the tube structure in a plane of the tube structure and induce resonant vibrational movements in the tube portions. A sensing element senses the deflections of the tube portions when the tube structure is vibrated with the drive element.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: September 25, 2012
    Assignee: Integrated Sensing Systems Inc.
    Inventors: Douglas Ray Sparks, Michael W. Putty, Richard Thayre Smith, Nader Najafi
  • Publication number: 20110214512
    Abstract: Fluidic systems and methods of determining properties of fluids flowing therein. The fluidic systems and methods make use of a micromachined device that determines at least one property of the fluid within the system. The micromachined device includes a base structure on a substrate and a tube structure extending from the base structure and spaced apart from a surface of the substrate. The tube structure has at least one pair of geometrically parallel tube portions substantially lying in a plane, and at least one continuous internal passage defined at least in part within the parallel tube portions. A drive element induces vibrational movement of the tube structure in the plane of the tube structure and induces resonant vibrational movements in the tube portions in the plane of the tube structure. A sensing element senses deflections of each tube portion in the plane of the tube structure.
    Type: Application
    Filed: April 25, 2011
    Publication date: September 8, 2011
    Applicant: INTEGRATED SENSING SYSTEMS, INC.
    Inventors: Douglas Ray Sparks, Michael W. Putty, Nader Najafi, Richard Thayre Smith
  • Patent number: 7921737
    Abstract: A microelectromechanical system (MEMS) device and method for operating the device to determine a property of a fluid. The device has a tube that extends from a base and is spaced apart from a substrate surface for vibrational movement in a plane normal to the surface. The tube defines a continuous internal passage having a fluid inlet and fluid outlet fluidically connected to the base. A cantilevered member attached to a distal portion of the tube opposite the base is configured for vibrational movement relative to the distal portion. A drive electrode operable to induce vibrational movements in the tube and cantilevered member is disposed on the substrate surface. Sensing electrodes are disposed on the substrate surface for sensing Coriolis-induced deflections of the tube when vibrated, generating outputs from which a property of a fluid flowing through the tube can be determined.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: April 12, 2011
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Douglas Ray Sparks, Richard Thayre Smith, Nader Najafi
  • Patent number: 7823445
    Abstract: A fluid sensing system and method for sensing properties of a flowing fluid. The system and method entail a microfluidic device having a micromachined tube supported above a substrate, a tube passage within a freestanding portion of the tube, an inlet and outlet in fluidic communication with the tube passage and an exterior of the microfluidic device, elements for vibrating the freestanding portion of the tube, and elements for sensing movement of the freestanding portion of the tube so as to measure the vibration frequency and/or deflection of the freestanding portion and produce therefrom at least one output corresponding to a property of a fluid flowing through the tube passage. The system and method further entail placing the microfluidic device in a flowing fluid so that a fraction of the fluid enters the tube passage, and processing the output of the device to compute a property of the fluid.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: November 2, 2010
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Douglas Ray Sparks, Richard Thayre Smith, Nader Najafi
  • Publication number: 20100037706
    Abstract: A microelectromechanical system (MEMS) device and a method for operating the device to determine at least one property of a fluid. The device includes a base on a substrate and a tube structure extending from the base and spaced apart from a surface of the substrate. The tube structure includes at least one tube portion and more preferably at least a pair of parallel tube portions substantially lying in a plane, at least one continuous internal passage defined at least in part within the parallel tube portions, and an inlet and outlet of the internal passage fluidically connected to the base. A drive element is operable to induce vibrational movement in the tube structure in a plane of the tube structure and induce resonant vibrational movements in the tube portions. A sensing element senses the deflections of the tube portions when the tube structure is vibrated with the drive element.
    Type: Application
    Filed: February 11, 2009
    Publication date: February 18, 2010
    Applicant: INTEGRATED SENSING SYSTEMS, INC.
    Inventors: Douglas Ray Sparks, Michael W. Putty, Richard Thayre Smith, Nader Najafi
  • Publication number: 20100037708
    Abstract: A microelectromechanical system (MEMS) device and method for operating the device to determine a property of a fluid. The device has a tube that extends from a base and is spaced apart from a substrate surface for vibrational movement in a plane normal to the surface. The tube defines a continuous internal passage having a fluid inlet and fluid outlet fluidically connected to the base. A cantilevered member attached to a distal portion of the tube opposite the base is configured for vibrational movement relative to the distal portion. A drive electrode operable to induce vibrational movements in the tube and cantilevered member is disposed on the substrate surface. Sensing electrodes are disposed on the substrate surface for sensing Coriolis-induced deflections of the tube when vibrated, generating outputs from which a property of a fluid flowing through the tube can be determined.
    Type: Application
    Filed: February 11, 2009
    Publication date: February 18, 2010
    Applicant: INTEGRATED SENSING SYSTEMS, INC.
    Inventors: Douglas Ray Sparks, Richard Thayre Smith, Nader Najafi
  • Publication number: 20090145198
    Abstract: A fluid sensing system and method for sensing properties of a flowing fluid. The system and method entail a microfluidic device having a micromachined tube supported above a substrate, a tube passage within a freestanding portion of the tube, an inlet and outlet in fluidic communication with the tube passage and an exterior of the microfluidic device, elements for vibrating the freestanding portion of the tube, and elements for sensing movement of the freestanding portion of the tube so as to measure the vibration frequency and/or deflection of the freestanding portion and produce therefrom at least one output corresponding to a property of a fluid flowing through the tube passage. The system and method further entail placing the microfluidic device in a flowing fluid so that a fraction of the fluid enters the tube passage, and processing the output of the device to compute a property of the fluid.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 11, 2009
    Applicant: INTEGRATED SENSING SYSTEMS, INC.
    Inventors: Douglas Ray Sparks, Richard Thayre Smith, Nader Najafi
  • Publication number: 20090075129
    Abstract: A microfluidic device and sensing method that utilize a resonating tube configured to have sufficient sensitivity to be capable of sensing the volume of a gas present as bubbles in a liquid or the flow rate and/or density of a gas or gas mixture flowing through the tube. The tube has a freestanding tube portion supported above a surface of a substrate so as to be capable of vibrating in a plane normal to the surface of the substrate. As a gas-containing fluid flows through an internal passage of the tube, a drive signal vibrates the freestanding tube portion at a resonant frequency thereof. Coriolis-induced deflections of the freestanding tube portion are sensed relative to the substrate to produce an output corresponding to the sensed deflections, and the drive signal and/or the output are assessed to determine the volume, density and/or flow rate of the gas of the gas-containing fluid.
    Type: Application
    Filed: November 7, 2008
    Publication date: March 19, 2009
    Applicant: INTEGRATED SENSING SYSTEMS, INC.
    Inventors: Douglas Ray Sparks, Richard Thayre Smith, Nader Najafi