Patents by Inventor Richard Versluis

Richard Versluis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11194659
    Abstract: A method for executing a quantum error correction cycle in a quantum computer provided with a substrate of qubits arranged in repeated unit cells, wherein data qubits (D1, D2, D3, D4) are coupled to respective X- and Z-ancillary qubits (X1, X2, Z1, Z2), wherein a nearest neighbor interaction is provided by detuning a transition frequency of any of the data qubits and ancillary qubits into a coupling frequency for providing a coherent 2-qubit gate, wherein said method comprises the steps of simultaneous coupling of first ones (X1, X2 or Z1, Z2) of the ancillary qubits (X1, X2, Z1, Z2) with a respective neighboring data qubit; and subsequent couplings of said first ones with the other neighboring data qubits; followed by simultaneous coupling of second ones (Z1, Z2 or X1, X2) of the ancillary qubits with a neighboring data qubit; and subsequent couplings of said second ancillary qubit with the other neighboring data qubits.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: December 7, 2021
    Assignees: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO, Technische Universiteit Delft
    Inventors: Richard Versluis, Leonardo DiCarlo, Stefano Poletto
  • Publication number: 20210279134
    Abstract: A method for executing a quantum error correction cycle in a quantum computer provided with a substrate of qubits arranged in repeated unit cells, wherein data qubits (D1, D2, D3, D4) are coupled to respective X- and Z-ancillary qubits (X1, X2, Z1, Z2), wherein a nearest neighbor interaction is provided by detuning a transition frequency of any of the data qubits and ancillary qubits into a coupling frequency for providing a coherent 2-qubit gate, wherein said method comprises the steps of simultaneous coupling of first ones (X1, X2 or Z1, Z2) of the ancillary qubits (X1, X2, Z1, Z2) with a respective neighboring data qubit; and subsequent couplings of said first ones with the other neighboring data qubits; followed by simultaneous coupling of second ones (Z1, Z2 or X1, X2) of the ancillary qubits with a neighboring data qubit; and subsequent couplings of said second ancillary qubit with the other neighboring data qubits.
    Type: Application
    Filed: September 26, 2017
    Publication date: September 9, 2021
    Inventors: Richard Versluis, Leonardo DiCarlo, Stefano Poletto
  • Patent number: 9176398
    Abstract: A method for thermally conditioning an optical element includes irradiating the optical element with radiation, not-irradiating the optical element with the radiation, allowing heat flow between the optical element and a conditioning fluid that is held in a conditioning fluid reservoir, and providing a fluid flow of the conditioning fluid, to supply thermally conditioned fluid to the reservoir. A flow rate of the fluid during the irradiating of the optical element is lower than a flow rate of the fluid when the optical element is not-irradiated.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: November 3, 2015
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Roger Wilhelmus Antonius Henricus Schmitz, Tjarko Adriaan Rudolf Van Empel, Marcel Johannus Elisabeth Hubertus Muitjens, Lun Cheng, Franciscus Johannes Joseph Janssen, Willem Arie Van Helden, Richard Versluis, Paulus Bartholomeus Johannes Schaareman, Axel Sebastiaan Lexmond, Evert Nieuwkoop, Charles William Barras Potts, Martinus Henricus Johannes Lemmen, Frederik Van Der Graaf, Mathilde Gertrudis Maria De Kroon, Johannes Fransiscus Maria Velthuis
  • Patent number: 8585224
    Abstract: An optical arrangement, e.g. a projection exposure apparatus (1) for EUV lithography, includes: a housing (2) enclosing an interior space (15); at least one, preferably reflective optical element (4-10, 12, 14.1-14.6) arranged in the housing (2); at least one vacuum generating unit (3) for the interior space (15) of the housing (2); and at least one vacuum housing (18, 18.1-18.10) arranged in the interior space (15) and enclosing at least the optical surface (17, 17.1, 17.2) of the optical element (4-10, 12, 14.1-14.5). A contamination reduction unit is associated with the vacuum housing (18.1-18.10) and reduces the partial pressure of contaminating substances, in particular of water and/or hydrocarbons, at least in close proximity to the optical surface (17, 17.1, 17.2) in relation to the partial pressure of the contaminating substances in the interior space (15).
    Type: Grant
    Filed: February 10, 2013
    Date of Patent: November 19, 2013
    Assignees: Carl Zeiss SMT GmbH, ASML Netherlands b.V.
    Inventors: Dirk Heinrich Ehm, Stephan Muellender, Thomas Stein, Johannes Hubertus Josephina Moors, Bastiaan Theodoor Wolschrijn, Dieter Kraus, Richard Versluis, Marcus Gerhardus Hendrikus Meijerink
  • Patent number: 8382301
    Abstract: An optical arrangement, e.g. a projection exposure apparatus (1) for EUV lithography, includes: a housing (2) enclosing an interior space (15); at least one, preferably reflective optical element (4-10, 12, 14.1-14.6) arranged in the housing (2); at least one vacuum generating unit (3) for the interior space (15) of the housing (2); and at least one vacuum housing (18, 18.1-18.10) arranged in the interior space (15) and enclosing at least the optical surface (17, 17.1, 17.2) of the optical element (4-10, 12, 14.1-14.5). A contamination reduction unit is associated with the vacuum housing (18.1-18.10) and reduces the partial pressure of contaminating substances, in particular of water and/or hydrocarbons, at least in close proximity to the optical surface (17, 17.1, 17.2) in relation to the partial pressure of the contaminating substances in the interior space (15).
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: February 26, 2013
    Assignees: Carl Zeiss SMT GmbH, ASML Netherlands B.V.
    Inventors: Dirk Heinrich Ehm, Stephan Muellender, Thomas Stein, Johannes Hubertus Josephina Moors, Bastiaan Theodoor Wolschrijn, Dieter Kraus, Richard Versluis, Marcus Gerhardus Hendrikus Meijerink
  • Publication number: 20110310368
    Abstract: A method for thermally conditioning an optical element includes irradiating the optical element with radiation, not-irradiating the optical element with the radiation, allowing heat flow between the optical element and a conditioning fluid that is held in a conditioning fluid reservoir, and providing a fluid flow of the conditioning fluid, to supply thermally conditioned fluid to the reservoir. A flow rate of the fluid during the irradiating of the optical element is lower than a flow rate of the fluid when the optical element is not-irradiated.
    Type: Application
    Filed: May 20, 2009
    Publication date: December 22, 2011
    Applicant: ASML Netherlands B.V.
    Inventors: Roger Wilhelmus Antonius Henricus Schmitz, Tjarko Adriaan Rudolf Van Empel, Marcel Johannus Elisabeth Hubertus Muitjens, Lun Cheng, Franciscus Johannes Joseph Janssen, William Arie Van Helden, Richard Versluis, Paulus Bartholomeus Johannes Schaareman, Axel Sebastiaan Lexmond, Evert Nieuwkoop, Charles William Barras Potts, Martinus Henricus Johannes Lemmen, Frederik Van Der Graaf, Mathilde Gertrudis Maria De Kroon, Johannes Fransiscus Maria Velthuis
  • Patent number: 7963144
    Abstract: A gas analyzing system is disclosed, the system including a gas analyzer and a reduced pressure chamber in which interior the gas analyzer is arranged, the reduced pressure chamber having an inlet configuration for a gas mixture inflow and an outlet configuration for a gas mixture outflow, wherein the outlet configuration during operation is connected to a pump system to facilitate the gas mixture outflow, the outlet configuration having a channel section and a flow section, the flow section having a cross-sectional area that is smaller than the cross -sectional area of the channel section.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: June 21, 2011
    Assignee: ASML Netherlands B.V.
    Inventors: Norbertus Benedictus Koster, Richard Versluis, Bart Dinand Paarhuis
  • Publication number: 20100005854
    Abstract: A gas analyzing system is disclosed, the system including a gas analyzer and a reduced pressure chamber in which interior the gas analyzer is arranged, the reduced pressure chamber having an inlet configuration for a gas mixture inflow and an outlet configuration for a gas mixture outflow, wherein the outlet configuration during operation is connected to a pump system to facilitate the gas mixture outflow, the outlet configuration having a channel section and a flow section, the flow section having a cross-sectional area that is smaller than the cross-sectional area of the channel section.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 14, 2010
    Applicant: ASML Netherlands B.V.
    Inventors: Norbertus Benedictus KOSTER, Richard Versluis, Bart Dinand Paarhuis
  • Patent number: 7624617
    Abstract: A gas analyzing system is disclosed, the system including a gas analyzer and a reduced pressure chamber in which interior the gas analyzer is arranged, the reduced pressure chamber having an inlet configuration for a gas mixture inflow and an outlet configuration for a gas mixture outflow, wherein the outlet configuration during operation is connected to a pump system to facilitate the gas mixture outflow, the outlet configuration having a channel section and a flow section, the flow section having a cross-sectional area that is smaller than the cross-sectional area of the channel section.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: December 1, 2009
    Assignee: ASML Netherlands B.V.
    Inventors: Norbertus Benedictus Koster, Richard Versluis, Bart Dinand Paarhuis
  • Publication number: 20090231707
    Abstract: An optical arrangement, in particular a projection exposure apparatus (1) for EUV lithography, includes: a housing (2) that encloses an interior space (15); at least one, in particular reflective, optical element (4 to 10, 12, 14.1 to 14.6) that is arranged in the housing (2); at least one vacuum generating unit (3) for generating a vacuum in the interior space (15) of the housing (2); and at least one vacuum housing (18, 18.1 to 18.10) that is arranged in the interior space (15) of the housing (2) and that encloses at least the optical surface (17, 17.1, 17.2) of the optical element (4 to 10, 12, 14.1 to 14.5), wherein a contamination reduction unit is associated with the vacuum housing (18.1 to 18.10), which contamination reduction unit reduces the partial pressure of contaminating substances, in particular of water and/or hydrocarbons, at least in close proximity to the optical surface (17, 17.1, 17.2) in relation to the partial pressure of the contaminating substances in the interior space (15).
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Applicants: Carl Zeiss SMT AG, AMSL NETHERLANDS B.V.
    Inventors: Dirk Heinrich EHM, Stephan MUELLENDER, Thomas STEIN, Johannes Hubertus Josephina MOORS, Bastiaan Theodoor WOLSCHRIJN, Dieter KRAUS, Richard VERSLUIS, Marcus Gerhardus Hendrikus MEIJERINK
  • Publication number: 20080128636
    Abstract: A gas analyzing system is disclosed, the system including a gas analyzer and a reduced pressure chamber in which interior the gas analyzer is arranged, the reduced pressure chamber having an inlet configuration for a gas mixture inflow and an outlet configuration for a gas mixture outflow, wherein the outlet configuration during operation is connected to a pump system to facilitate the gas mixture outflow, the outlet configuration having a channel section and a flow section, the flow section having a cross-sectional area that is smaller than the cross-sectional area of the channel section.
    Type: Application
    Filed: November 21, 2006
    Publication date: June 5, 2008
    Applicant: ASML Netherlands B.V.
    Inventors: Norbertus Benedictus Koster, Richard Versluis, Bart Dinand Paarhuis