Patents by Inventor Richard W. Burns

Richard W. Burns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926630
    Abstract: This application relates to compounds of Formula (I): or pharmaceutically acceptable salts thereof, which are inhibitors of PI3K-? which are useful for the treatment of disorders such as autoimmune diseases, cancer, cardiovascular diseases, and neurodegenerative diseases.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: March 12, 2024
    Assignee: Incyte Corporation
    Inventors: Brent Douty, Andrew W. Buesking, David M. Burns, Andrew P. Combs, Nikoo Falahatpisheh, Ravi Kumar Jalluri, Daniel Levy, Padmaja Polam, Lixin Shao, Stacey Shepard, Artem Shvartsbart, Richard B. Sparks, Eddy W. Yue
  • Patent number: 11772821
    Abstract: The present disclosure is directed to a method of repairing an aircraft. The method comprises charging a thermal transfer blanket comprising a thermal energy storage media with thermal energy from a heat source. The method further comprises positioning a thermally curable patch on an exterior surface of an aircraft. The thermally curable patch comprises an uncured polymer having a first temperature. The thermal transfer blanket is applied to the thermally curable patch. Thermal energy is transferred between the thermal transfer blanket and the thermally curable patch to increase the first temperature of the uncured polymer to a cure temperature for a sufficient amount of time to cure the polymer.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: October 3, 2023
    Assignee: THE BOEING COMPANY
    Inventors: Robert A DiChiara, Jr., Richard W. Burns, Glenn B. Godinho
  • Patent number: 11364688
    Abstract: A method of induction welding a first thermoplastic composite (TPC) to a second thermoplastic composite (TPC) includes inductively heating a weld interface area between the first TPC and the second TPC, and cooling a surface of the first TPC opposite the weld interface area while inductively heating the weld interface area.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: June 21, 2022
    Assignee: The Boeing Company
    Inventors: Robert A. DiChiara, Francis J. Samalot Rivera, Richard W. Burns
  • Publication number: 20220119129
    Abstract: The present disclosure is directed to a method of repairing an aircraft. The method comprises charging a thermal transfer blanket comprising a thermal energy storage media with thermal energy from a heat source. The method further comprises positioning a thermally curable patch on an exterior surface of an aircraft. The thermally curable patch comprises an uncured polymer having a first temperature. The thermal transfer blanket is applied to the thermally curable patch. Thermal energy is transferred between the thermal transfer blanket and the thermally curable patch to increase the first temperature of the uncured polymer to a cure temperature for a sufficient amount of time to cure the polymer.
    Type: Application
    Filed: August 6, 2021
    Publication date: April 21, 2022
    Applicant: The Boeing Company
    Inventors: Robert A. DiChiara, JR., Richard W. Burns, Glenn B. Godinho
  • Patent number: 11230066
    Abstract: A method of induction welding a first carbon fiber thermoplastic composite (TPC) to a second carbon fiber thermoplastic composite (TPC) using an induction coil includes aligning the first TPC with the second TPC to form a weld interface area, flexing a heat sink onto a surface of the first TPC between the weld interface area and the induction coil, and inductively heating the weld interface area with the induction coil.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: January 25, 2022
    Assignee: The Boeing Company
    Inventors: Robert A. DiChiara, Richard W. Burns, Francis J. Samalot Rivera
  • Publication number: 20210039328
    Abstract: A method of induction welding a first carbon fiber thermoplastic composite (TPC) to a second carbon fiber thermoplastic composite (TPC) using an induction coil includes aligning the first TPC with the second TPC to form a weld interface area, flexing a heat sink onto a surface of the first TPC between the weld interface area and the induction coil, and inductively heating the weld interface area with the induction coil.
    Type: Application
    Filed: August 6, 2019
    Publication date: February 11, 2021
    Inventors: Robert A. DiChiara, Richard W. Burns, Francis J. Samalot Rivera
  • Publication number: 20210039329
    Abstract: A method of induction welding a first thermoplastic composite (TPC) to a second thermoplastic composite (TPC) includes inductively heating a weld interface area between the first TPC and the second TPC, and cooling a surface of the first TPC opposite the weld interface area while inductively heating the weld interface area.
    Type: Application
    Filed: August 6, 2019
    Publication date: February 11, 2021
    Inventors: Robert A. DiChiara, Francis J. Samalot Rivera, Richard W. Burns
  • Patent number: 10431862
    Abstract: An apparatus is provided for causing a phase-shift in reflected signals that are a reflection of surface-traveling wave signals of a select signal frequency. The apparatus comprises a conductive strip having a plurality of slots therein alternatingly arranged orthogonal to each other, each slot having an effective length that is a fraction between 9/16 and ? of the wavelength associated with the select signal frequency, and a plurality of conductive enclosures respectively disposed under each of the plurality of slots. Each of the conductive enclosure have a width and length sufficient to enclose a respective corresponding slot, and a depth that is a fraction of between ? and ? of the wavelength associated with the select signal frequency when transmitted in the dielectric material.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: October 1, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Garrett L. Gilchrist, Richard W. Burns, Michael P. Hurst
  • Publication number: 20190044206
    Abstract: An apparatus is provided for causing a phase-shift in reflected signals that are a reflection of surface-traveling wave signals of a select signal frequency. The apparatus comprises a conductive strip having a plurality of slots therein alternatingly arranged orthogonal to each other, each slot having an effective length that is a fraction between 9/16 and ? of the wavelength associated with the select signal frequency, and a plurality of conductive enclosures respectively disposed under each of the plurality of slots. Each of the conductive enclosure have a width and length sufficient to enclose a respective corresponding slot, and a depth that is a fraction of between ? and ? of the wavelength associated with the select signal frequency when transmitted in the dielectric material.
    Type: Application
    Filed: October 10, 2018
    Publication date: February 7, 2019
    Applicant: The Boeing Company
    Inventors: Garrett L. GILCHRIST, Richard W. BURNS, Michael P. HURST
  • Patent number: 10183736
    Abstract: Ventilated aero-structures include a micro-lattice structure operatively coupled to a honeycomb core. The interface between the honeycomb core and the micro-lattice structure is configured to permit air flow to and from the honeycomb core via the micro-lattice structure. Aircraft include a ventilated aero-structure and a ventilation system configured to circulate air through the ventilated aero-structure. Some methods include coupling a micro-lattice structure to a honeycomb core. Some methods include utilizing a ventilated aero-structure to assemble an aircraft.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: January 22, 2019
    Assignee: The Boeing Company
    Inventors: Robert E. Doty, Richard W. Burns, Alan Jon Jacobsen, Sophia Shu Yang
  • Patent number: 10116023
    Abstract: An apparatus is provided for causing a phase-shift in reflected signals that are a reflection of surface-traveling wave signals of a select signal frequency. The apparatus comprises a conductive strip having a plurality of slots therein alternatingly arranged orthogonal to each other, each slot having an effective length that is a fraction between 9/16 and ? of the wavelength associated with the select signal frequency, and a plurality of conductive enclosures respectively disposed under each of the plurality of slots. Each of the conductive enclosure have a width and length sufficient to enclose a respective corresponding slot, and a depth that is a fraction of between ? and ? of the wavelength associated with the select signal frequency when transmitted in the dielectric material.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: October 30, 2018
    Assignee: The Boeing Company
    Inventors: Garrett L. Gilchrist, Richard W. Burns, Michael P. Hurst
  • Publication number: 20170040686
    Abstract: An apparatus is provided for causing a phase-shift in reflected signals that are a reflection of surface-traveling wave signals of a select signal frequency. The apparatus comprises a conductive strip having a plurality of slots therein alternatingly arranged orthogonal to each other, each slot having an effective length that is a fraction between 9/16 and ? of the wavelength associated with the select signal frequency, and a plurality of conductive enclosures respectively disposed under each of the plurality of slots. Each of the conductive enclosure have a width and length sufficient to enclose a respective corresponding slot, and a depth that is a fraction of between ? and ? of the wavelength associated with the select signal frequency when transmitted in the dielectric material.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 9, 2017
    Inventors: Garrett L. Gilchrist, Richard W. Burns, Michael P. Hurst
  • Patent number: 9487886
    Abstract: A nanowire structure that includes indium tin oxide and has a hollow core.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: November 8, 2016
    Assignee: THE BOEING COMPANY
    Inventors: Wen Li, Chaoyin Zhou, Richard W. Burns, Robert E. Doty, Amanda Phelps
  • Publication number: 20160194070
    Abstract: Ventilated aero-structures include a micro-lattice structure operatively coupled to a honeycomb core. The interface between the honeycomb core and the micro-lattice structure is configured to permit air flow to and from the honeycomb core via the micro-lattice structure. Aircraft include a ventilated aero-structure and a ventilation system configured to circulate air through the ventilated aero-structure. Some methods include coupling a micro-lattice structure to a honeycomb core. Some methods include utilizing a ventilated aero-structure to assemble an aircraft.
    Type: Application
    Filed: March 16, 2016
    Publication date: July 7, 2016
    Inventors: Robert E. Doty, Richard W. Burns, Alan Jon Jacobsen, Sophia Shu Yang
  • Patent number: 9321241
    Abstract: Ventilated aero-structures include a micro-lattice structure operatively coupled to a honeycomb core. The interface between the honeycomb core and the micro-lattice structure is configured to permit air flow to and from the honeycomb core via the micro-lattice structure. Aircraft include a ventilated aero-structure and a ventilation system configured to circulate air through the ventilated aero-structure. Some methods include coupling a micro-lattice structure to a honeycomb core. Some methods include utilizing a ventilated aero-structure to assemble an aircraft.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: April 26, 2016
    Assignee: The Boeing Company
    Inventors: Robert E. Doty, Richard W. Burns, Alan Jon Jacobsen, Sophia Shu Yang
  • Patent number: 8714488
    Abstract: A method and apparatus comprising an adhesive layer and a conductive elastic material layer. The adhesive layer is capable of being placed in a channel for a joint. The adhesive layer is capable of resuming an original shape after being deformed. A conductive elastic material layer is on the adhesive layer. The coating covers the conductive elastic material layer and is capable of resuming the original shape after being deformed.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: May 6, 2014
    Assignee: The Boeing Company
    Inventors: Richard W. Burns, Daryl Tryson, Michael F. McCracken
  • Patent number: 8652648
    Abstract: A method for manufacturing indium tin oxide nanowires by preparing a solution that includes an indium-containing species, a tin-containing species and a polymeric material, wherein the solution has a molar ratio of tin to indium in a range from about 5 to about 15 percent, electrospinning fibers using the solution, and heating the fibers to a calcination temperature and maintaining the fibers at the calcination temperature for a predetermined calcination time.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: February 18, 2014
    Assignee: The Boeing Company
    Inventors: Chaoyin Zhou, Amanda Phelps, Richard W. Burns, Wen Li
  • Publication number: 20130303067
    Abstract: Ventilated aero-structures include a micro-lattice structure operatively coupled to a honeycomb core. The interface between the honeycomb core and the micro-lattice structure is configured to permit air flow to and from the honeycomb core via the micro-lattice structure. Aircraft include a ventilated aero-structure and a ventilation system configured to circulate air through the ventilated aero-structure. Some methods include coupling a micro-lattice structure to a honeycomb core. Some methods include utilizing a ventilated aero-structure to assemble an aircraft.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 14, 2013
    Applicant: The Boeing Company
    Inventors: Robert E. Doty, Richard W. Burns, Alan Jon Jacobsen, Sophia Shu Yang
  • Publication number: 20130272953
    Abstract: A method for manufacturing indium tin oxide nanowires by preparing a solution that includes an indium-containing species, a tin-containing species and a polymeric material, wherein the solution has a molar ratio of tin to indium in a range from about 5 to about 15 percent, electrospinning fibers using the solution, and heating the fibers to a calcination temperature and maintaining the fibers at the calcination temperature for a predetermined calcination time.
    Type: Application
    Filed: June 13, 2013
    Publication date: October 17, 2013
    Inventors: Chaoyin Zhou, Amanda Phelps, Richard W. Burns, Wen Li
  • Patent number: 8465691
    Abstract: A method for manufacturing indium tin oxide nanowires by preparing a solution that includes an indium-containing species, a tin-containing species and a polymeric material, wherein the solution has a molar ratio of tin to indium in a range from about 5 to about 15 percent, electrospinning fibers using the solution, and heating the fibers to a calcination temperature and maintaining the fibers at the calcination temperature for a predetermined calcination time.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: June 18, 2013
    Assignee: The Boeing Company
    Inventors: Chaoyin Zhou, Amanda Phelps, Richard W. Burns, Wen Li