Patents by Inventor Richard W. Parks

Richard W. Parks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9301340
    Abstract: Multi-zone IR solar cell processing furnaces using a single, full-width conveyor belt; selected zones are divided into multiple lanes by upper or/and lower longitudinal divider walls, and heated by high intensity radiation IR lamps backed by a flat plate of ultra-high reflectance ceramic material. Lamp numbers and spacing in each zone/lane can be varied. Power to each lamp, or zone/lane lamp array, both upper and lower, is individually and independently controlled to provide infinite number of temperature profiles in each heating zone/lane. In multi-lane zones the IR lamps are folded, the inner ends being supported by the lane dividers. Lamp external power leads are both accessible from one side of the furnace. The lamp internal filaments include non-radiant and radiant sections arranged so that a pair of radiant sections are aligned in the lamp-folded configuration and disposed over the full width of the solar cell wafers.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: March 29, 2016
    Assignee: TP SOLAR, INC.
    Inventors: Peter G. Ragay, Richard W. Parks, Luis Alejandro Rey Garcia
  • Patent number: 8828776
    Abstract: Multi-zone, solar cell diffusion furnaces having a plurality of radiant element (SiC) or/and high intensity IR lamp heated process zones, including baffle, ramp-up, firing, soaking and cooling zone(s). The transport of solar cell wafers, e.g., silicon, selenium, germanium or gallium-based solar cell wafers, through the furnace is implemented by use of an ultra low-mass, wafer transport system comprising laterally spaced shielded, synchronously driven, metal bands or chains carrying non-rotating alumina tubes suspended on wires between them. The wafers rest on raised circumferential standoffs spaced laterally along the alumina tubes, which reduces contamination. The high intensity IR flux rapidly photo-radiation conditions the wafers so that diffusion occurs >3× faster than conventional high-mass thermal furnaces. Longitudinal side wall heaters comprising coil heaters in Inconel sheaths inserted in carrier tubes are employed to insure even heating of wafer edges adjacent the side walls.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 9, 2014
    Assignee: TP Solar, Inc.
    Inventors: Richard W. Parks, Luis Alejandro Rey Garcia, Peter G. Ragay
  • Patent number: 8829396
    Abstract: A new class of work-piece conveyors, comprising zero-mass, shadow-less transport systems, with a drive having a pair of parallel, laterally spaced, movable chains defining a processing path, with fingers projecting transversely toward the process path centerline. The gap between fingers eliminates conveyor tube/rod supports, improving wafer quality and conserving energy. Implementations include wire chain, band and roller chain transports to which fingers are secured. Fingers are angled down so that the intersection of the bottom and side edges of the work-piece make only point contacts with each finger. A pair of finger chains implement a single lane drive; adding center bilateral finger drive chains with oppositely pointing fingers implement a multi-lane system. The inventive method includes individually configurable processing temperature profiles in side-by-side lanes, on a zone-by-zone, upper and lower half basis for broad processing flexibility.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: September 9, 2014
    Assignee: TP Solar, Inc.
    Inventors: Luis Alejandro Rey Garcia, Richard W. Parks, Peter G. Ragay
  • Patent number: 8816253
    Abstract: Multi-lane, side-by-side, independently driven transport systems particularly useful for transfer on conveyor belts or finger/chains of thin work pieces, such as silicon wafers, through processing equipment for converting the wafers into solar cells, including UV pre-treaters, dopers, dryers, diffusion furnaces and metallization furnaces. The inventive multi-lane transport systems may employ wire mesh belts having a flying bridge wafer support system comprising longitudinally spaced carrier wire elements that support the wafers at their side edges at only point contacts, by means of opposed, inwardly inclined, downwardly slanted segments or wings. Alternately, finger drives comprising spaced-apart chains having inwardly projecting fingers may be used for transport of the wafers by side edge contact. Friction or sprocket drives having tensioner assemblies associa-ted therewith are used to move the transport belts or finger chains through the furnace zones.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: August 26, 2014
    Assignee: TP Solar, Inc.
    Inventors: Richard W. Parks, Peter G. Ragay, Luis Alejandro Rey Garcia
  • Patent number: 8742532
    Abstract: Silicon wafer processing system, apparatus and method of doping silicon wafers with hot concentrated acid dopant compositions for forming p-n junction and back contact layers during processing into PV solar cells. Highly concentrated acid dopant is atomized with pressurized gas and heated in the range of 80-200° C., then introduced into a concentrated acid vapor processing chamber to apply vapor over 1.5-6 min to wafers moving horizontally on a multi-lane conveyor system through the processing chamber. The wafers are dried and forwarded to a diffusion furnace. An optional UV pre-treatment assembly pre-conditions the wafers with UV radiation prior to dopant application, and doped wafers may be post-treated in a UV treatment module before being fired. The wafers may be cooled in the processing chamber. Post-firing, the wafers exhibit excellent sheet resistance in the 60-95?/sq range, and are highly uniform across the wafers and wafer-to-wafer.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: June 3, 2014
    Assignee: TP Solar, Inc.
    Inventors: Luis Alejandro Rey Garcia, Peter G. Ragay, Richard W. Parks
  • Publication number: 20140017848
    Abstract: Multi-zone IR solar cell processing furnaces using a single, full-width conveyor belt; selected zones are divided into multiple lanes by upper or/and lower longitudinal divider walls, and heated by high intensity radiation IR lamps backed by a flat plate of ultra-high reflectance ceramic material. Lamp numbers and spacing in each zone/lane can be varied. Power to each lamp, or zone/lane lamp array, both upper and lower, is individually and independently controlled to provide infinite number of temperature profiles in each heating zone/lane. In multi-lane zones the IR lamps are folded, the inner ends being supported by the lane dividers. Lamp external power leads are both accessible from one side of the furnace. The lamp internal filaments include non-radiant and radiant sections arranged so that a pair of radiant sections are aligned in the lamp-folded configuration and disposed over the full width of the solar cell wafers.
    Type: Application
    Filed: September 18, 2013
    Publication date: January 16, 2014
    Applicant: TP SOLAR, INC.
    Inventors: Peter G. Ragay, Richard W. Parks, Luis Alejandro Rey Garcia
  • Patent number: 8571396
    Abstract: High reflectance element IR lamp module and method of firing multi-zone IR furnaces for solar cell processing comprising lamps disposed backed by a flat or configured plate of ultra-high reflectance ceramic material. Optionally, the high reflectance plate can be configured with ripples or grooves to isolate each lamp from adjacent lamps in the process zone. Furnace cooling air is exhausted and recycled upstream for energy conservation. Lamp spacing can be varied and power to each lamp individually controlled to provide infinite control of temperature profile in each heating zone. The high reflectance element may be constructed of dense ceramic fiber board, and then coated with high reflectance ceramic composition, and baked or fired to form the finished element.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: October 29, 2013
    Assignee: TP Solar, Inc.
    Inventors: Peter G. Ragay, Richard W. Parks, Luis Alejandro Rey Garcia
  • Publication number: 20120269226
    Abstract: Multi-zone, solar cell diffusion furnaces having a plurality of radiant element (SiC) or/and high intensity IR lamp heated process zones, including baffle, ramp-up, firing, soaking and cooling zone(s). The transport of solar cell wafers, e.g., silicon, selenium, germanium or gallium-based solar cell wafers, through the furnace is implemented by use of an ultra low-mass, wafer transport system comprising laterally spaced shielded, synchronously driven, metal bands or chains carrying non-rotating alumina tubes suspended on wires between them. The wafers rest on raised circumferential standoffs spaced laterally along the alumina tubes, which reduces contamination. The high intensity IR flux rapidly photo-radiation conditions the wafers so that diffusion occurs>3× faster than conventional high-mass thermal furnaces. Longitudinal side wall heaters comprising coil heaters in Inconel sheaths inserted in carrier tubes are employed to insure even heating of wafer edges adjacent the side walls.
    Type: Application
    Filed: July 2, 2012
    Publication date: October 25, 2012
    Applicant: TP SOLAR, INC.
    Inventors: Richard W. Parks, Luis Alejandro Rey Garcia, Peter G. Ragay
  • Patent number: 8236596
    Abstract: Multi-zone, solar cell diffusion furnaces having a plurality of radiant element (SiC) or/and high intensity IR lamp heated process zones, including baffle, ramp-up, firing, soaking and cooling zone(s). The transport of solar cell wafers, e.g., silicon, selenium, germanium or gallium-based solar cell wafers, through the furnace is implemented by use of an ultra low-mass, wafer transport system comprising laterally spaced shielded metal bands or chains carrying non-rotating alumina tubes suspended on wires between them. The wafers rest on raised circumferential standoffs spaced laterally along the alumina tubes, which reduces contamination. The bands or chains are driven synchronously at ultra-low tension by a pin drive roller or sprocket at either the inlet or outlet end of the furnace, with appropriate tensioning systems disposed in the return path. The high intensity IR flux rapidly photo-radiation conditions the wafers so that diffusion occurs >3× faster than conventional high-mass thermal furnaces.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: August 7, 2012
    Assignee: TP Solar, Inc.
    Inventors: Richard W. Parks, Luis Alejandro Rey Garcia, Peter M. Ragay
  • Publication number: 20120187105
    Abstract: Multi-lane, side-by-side, independently driven transport systems particularly useful for transfer on conveyor belts or finger/chains of thin work pieces, such as silicon wafers, through processing equipment for converting the wafers into solar cells, including UV pre-treaters, dopers, dryers, diffusion furnaces and metallization furnaces. The inventive multi-lane transport systems may employ wire mesh belts having a flying bridge wafer support system comprising longitudinally spaced carrier wire elements that support the wafers at their side edges at only point contacts, by means of opposed, inwardly inclined, downwardly slanted segments or wings. Alternately, finger drives comprising spaced-apart chains having inwardly projecting fingers may be used for transport of the wafers by side edge contact. Friction or sprocket drives having tensioner assemblies associa-ted therewith are used to move the transport belts or finger chains through the furnace zones.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 26, 2012
    Applicant: TP SOLAR, INC.
    Inventors: Richard W. Parks, Peter G. Ragay, Luis Alejandro Rey Garcia
  • Publication number: 20120149182
    Abstract: Silicon wafer processing system, apparatus and method of doping silicon wafers with hot concentrated acid dopant compositions for forming p-n junction and back contact layers during processing into PV solar cells. Highly concentrated acid dopant is atomized with pressurized gas and heated in the range of 80-200° C., then introduced into a concentrated acid vapor processing chamber to apply vapor over 1.5-6 min to wafers moving horizontally on a multi-lane conveyor system through the processing chamber. The wafers are dried and forwarded to a diffusion furnace. An optional UV pre-treatment assembly pre-conditions the wafers with UV radiation prior to dopant application, and doped wafers may be post-treated in a UV treatment module before being fired. The wafers may be cooled in the processing chamber. Post-firing, the wafers exhibit excellent sheet resistance in the 60-95 ?/sq range, and are highly uniform across the wafers and wafer-to-wafer.
    Type: Application
    Filed: September 12, 2011
    Publication date: June 14, 2012
    Applicant: TP SOLAR, INC.
    Inventors: Luis Alejandro Rey Garcia, Peter G. Ragay, Richard W. Parks
  • Publication number: 20120132638
    Abstract: A new class of work-piece conveyors, comprising zero-mass, shadow-less transport systems, with a drive having a pair of parallel, laterally spaced, movable chains defining a processing path, with fingers projecting transversely toward the process path centerline. The gap between fingers eliminates conveyor tube/rod supports, improving wafer quality and conserving energy. Implementations include wire chain, band and roller chain transports to which fingers are secured. Fingers are angled down so that the intersection of the bottom and side edges of the work-piece make only point contacts with each finger. A pair of finger chains implement a single lane drive; adding center bilateral finger drive chains with oppositely pointing fingers implement a multi-lane system. The inventive method includes individually configurable processing temperature profiles in side-by-side lanes, on a zone-by-zone, upper and lower half basis for broad processing flexibility.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 31, 2012
    Applicant: TP Solar, Inc.
    Inventors: Luis Alejandro Rey Garcia, Richard W. Parks, Peter G. Ragay
  • Publication number: 20110306160
    Abstract: Multi-zone, solar cell diffusion furnaces having a plurality of radiant element (SiC) or/and high intensity IR lamp heated process zones, including baffle, ramp-up, firing, soaking and cooling zone(s). The transport of solar cell wafers, e.g., silicon, selenium, germanium or gallium-based solar cell wafers, through the furnace is implemented by use of an ultra low-mass, wafer transport system comprising laterally spaced shielded metal bands or chains carrying non-rotating alumina tubes suspended on wires between them. The wafers rest on raised circumferential standoffs spaced laterally along the alumina tubes, which reduces contamination. The bands or chains are driven synchronously at ultra-low tension by a pin drive roller or sprocket at either the inlet or outlet end of the furnace, with appropriate tensioning systems disposed in the return path. The high intensity IR flux rapidly photo-radiation conditions the wafers so that diffusion occurs >3× faster than conventional high-mass thermal furnaces.
    Type: Application
    Filed: August 19, 2011
    Publication date: December 15, 2011
    Applicant: TP SOLAR, INC.
    Inventors: Richard W. Parks, Luis Alejandro Rey Garcia, Peter G. Ragay
  • Patent number: 8039289
    Abstract: Multi-zone, solar cell diffusion furnaces having a plurality of radiant element (SiC) or/and high intensity IR lamp heated process zones, including baffle, ramp-up, firing, soaking and cooling zone(s). The transport of solar cell wafers, e.g., silicon, selenium, germanium or gallium-based solar cell wafers, through the furnace is implemented by use of an ultra low-mass, wafer transport system comprising laterally spaced shielded metal bands or chains carrying non-rotating alumina tubes suspended on wires between them. The wafers rest on raised circumferential standoffs spaced laterally along the alumina tubes, which reduces contamination. The bands or chains are driven synchronously at ultra-low tension by a pin drive roller or sprocket at either the inlet or outlet end of the furnace, with appropriate tensioning systems disposed in the return path. The high intensity IR flux rapidly photo-radiation conditions the wafers so that diffusion occurs >3× faster than conventional high-mass thermal furnaces.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: October 18, 2011
    Assignee: TP Solar, Inc.
    Inventors: Richard W. Parks, Luis Alejandro Rey Garcia, Peter G. Ragay
  • Publication number: 20110013892
    Abstract: High reflectance element IR lamp module and method of firing multi-zone IR furnaces for solar cell processing comprising lamps disposed backed by a flat or configured plate of ultra-high reflectance ceramic material. Optionally, the high reflectance plate can be configured with ripples or grooves to isolate each lamp from adjacent lamps in the process zone. Furnace cooling air is exhausted and recycled upstream for energy conservation. Lamp spacing can be varied and power to each lamp individually controlled to provide infinite control of temperature profile in each heating zone. The high reflectance element may be constructed of dense ceramic fiber board, and then coated with high reflectance ceramic composition, and baked or fired to form the finished element.
    Type: Application
    Filed: September 28, 2010
    Publication date: January 20, 2011
    Applicant: TP SOLAR, INC.
    Inventors: Peter G. Ragay, Richard W. Parks, Luis Alejandro Rey Garcia
  • Publication number: 20100267188
    Abstract: Multi-zone, solar cell diffusion furnaces having a plurality of radiant element (SiC) or/and high intensity IR lamp heated process zones, including baffle, ramp-up, firing, soaking and cooling zone(s). The transport of solar cell wafers, e.g., silicon, selenium, germanium or gallium-based solar cell wafers, through the furnace is implemented by use of an ultra low-mass, wafer transport system comprising laterally spaced shielded metal bands or chains carrying non-rotating alumina tubes suspended on wires between them. The wafers rest on raised circumferential standoffs spaced laterally along the alumina tubes, which reduces contamination. The bands or chains are driven synchronously at ultra-low tension by a pin drive roller or sprocket at either the inlet or outlet end of the furnace, with appropriate tensioning systems disposed in the return path. The high intensity IR flux rapidly photo-radiation conditions the wafers so that diffusion occurs >3× faster than conventional high-mass thermal furnaces.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 21, 2010
    Applicant: TP SOLAR, INC.
    Inventors: Richard W. Parks, Peter G. Ragay, Luis Alejandro Rey Garcia
  • Patent number: 7805064
    Abstract: Isolation IR heat lamp module and method of firing multi-zone IR furnaces for solar cell processing comprising lamps disposed in individual parallel channels in a reflector/insulator body to provide a cooling air channel surrounding each tube; the channels are covered with IR-transmissive plate material to isolate each lamp from adjacent lamps and the process zone. Cooling air is exhausted and recycled upstream for energy conservation. Lamp spacing can be varied and power to each lamp individually controlled to provide infinite control of temperature profile in each heating zone. For a spike zone, and in combination with downstream quench control and annealing zones, steep heating and cooling curves with very short dwell (sharp) peak temperature profiles permit faster throughput due to operation of the lampsm at essentially 100% rated capacity, at a 2× or greater heating and throughput rate without compromising lamp life, while producing solar cells with improved output efficiency.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: September 28, 2010
    Assignee: TP Solar, Inc. (Corporation of CA, USA)
    Inventors: Peter G. Ragay, Richard W. Parks, Luis Alejandro Rey Garcia, Raymond G. Kruzek
  • Publication number: 20080012499
    Abstract: Isolation IR heat lamp module and method of firing multi-zone IR furnaces for solar cell processing comprising lamps disposed in individual parallel channels in a reflector/insulator body to provide a cooling air channel surrounding each tube; the channels are covered with IR-transmissive plate material to isolate each lamp from adjacent lamps and the process zone. Cooling air is exhausted and recycled upstream for energy conservation. Lamp spacing can be varied and power to each lamp individually controlled to provide infinite control of temperature profile in each heating zone. For a spike zone, and in combination with downstream quench control and annealing zones, steep heating and cooling curves with very short dwell (sharp) peak temperature profiles permit faster throughput due to operation of the lampsm at essentially 100% rated capacity, at a 2× or greater heating and throughput rate without compromising lamp life, while producing solar cells with improved output efficiency.
    Type: Application
    Filed: June 25, 2007
    Publication date: January 17, 2008
    Applicant: Thermal Processing Solutions, Inc.
    Inventors: Peter G. Ragay, Richard W. Parks, Luis Alejandro Rey Garcia, Raymond G. Kruzek
  • Patent number: 4372279
    Abstract: A heated fuel line for preventing solidifying of fuel in the fuel line of an engine in extremely low-temperature environments includes an electrical resistance heating element positioned directly inside the fuel line. A thin, tape-like heating element is preferably employed through the length of the fuel line between the tank and the connection to a fuel filter near the engine. Lead wires extend from the downstream end of the heating element through a fitting which carries the leads to the exterior of the fuel line. The heating element is preferably of a type including a pair of spaced conductor wires covered with and separated by a sheath of a radiation cross-linked polymer which has the property of becoming more conductive in lower temperatures and less conductive in higher temperatures. At lower temperatures, where heating of the fuel in the line is most needed, the element therefore produces the greatest amount of heat.
    Type: Grant
    Filed: November 24, 1980
    Date of Patent: February 8, 1983
    Assignee: Paccar Inc.
    Inventor: Richard W. Parks