Patents by Inventor Richard W. Wensel

Richard W. Wensel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7061082
    Abstract: A semiconductor device includes a heat sink adjacent to a die. A dam is positioned at the peripheral edges of the heat sink. During a transfer molding process, the dam serves two purposes. First, the dam prevents damage to the mold. Second, the dam prevents encapsulant packaging compound material from flowing onto the heat sink. The dam may be a gasket. The dam may also be a burr created by, for example, stamping the bottom of the heat sink. The dam may include copper, polyamides, and leadlock tape. The dam may be permanently connected to the heat sink for removal following packaging. The dam may be removed mechanically, through the use of heat, or during an electrolytic deflash cycle.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: June 13, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Patent number: 6921860
    Abstract: The present disclosure suggests various microelectronic component assembly designs and methods for manufacturing microelectronic component assemblies. In one particular implementation, a microelectronic component includes an array of spaced-apart dams, each of which is associated with and circumscribes an open contact volume associated with one of the contacts. A dielectric material may cover the portion of the microelectronic component active surface that is external to the dams and extend between the spaced-apart dams.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: July 26, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Darin L. Peterson, Richard W. Wensel, Choon Kuan Lee, James A. Faull
  • Patent number: 6869811
    Abstract: A semiconductor device includes a heat sink adjacent to a die. A dam is positioned at the peripheral edges of the heat sink. During a transfer molding process, the dam serves two purposes. First, the dam prevents damage to the mold. Second, the dam prevents encapsulant packaging compound material from flowing onto the heat sink. The dam may be a gasket. The dam may also be a burr created by, for example, stamping the bottom of the heat sink. The dam may include copper, polyamides, and leadlock tape. The dam may be permanently connected to the heat sink or removed following packaging. The dam may be removed mechanically, through the use of heat, or during an electrolytic deflash cycle.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: March 22, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Publication number: 20040188123
    Abstract: The present disclosure suggests various microelectronic component assembly designs and methods for manufacturing microelectronic component assemblies. In one particular implementation, a microelectronic component includes an array of spaced-apart dams, each of which is associated with and circumscribes an open contact volume associated with one of the contacts. A dielectric material may cover the portion of the microelectronic component active surface that is external to the dams and extend between the spaced-apart dams.
    Type: Application
    Filed: March 18, 2003
    Publication date: September 30, 2004
    Inventors: Darin L. Peterson, Richard W. Wensel, Choon Kuan Lee, James A. Faull
  • Patent number: 6734372
    Abstract: A method and device for providing a relief area on the surface of a molded I/C package. Specifically, a method of reducing delamination at the gate area of a molded I/C package by disposing an area of patterned metal traces on the substrate surface to form a relief area. The relief area will permit the I/C package to be broken away form the molding apparatus while reducing the possibility of delamination or Au/Cu burs at the gate area.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: May 11, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Stephen L. James, Richard W. Wensel, Brad D. Rumsey
  • Patent number: 6707165
    Abstract: An encapsulant molding technique used in chip-on-board encapsulation wherein a residual organic compound layer on the surface of a substrate is used to facilitate removal of unwanted encapsulant material. An organic compound layer which inherently forms on the substrate during the fabrication of the substrate or during various chip attachment processes is masked in a predetermined location with a mask. The substrate is then cleaned to remove the organic compound layer. The mask protects the masked portion of the organic material layer which becomes a release layer to facilitate gate break. An encapsulant mold is placed over the substrate and chip and an encapsulant material is injected into the encapsulant mold cavity through an interconnection channel. The release layer is formed in a position to reside as the bottom of the interconnection channel. Preferably, the interconnection channel has a gate adjacent the encapsulant mold cavity.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: March 16, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Publication number: 20040033644
    Abstract: A semiconductor device includes a heat sink adjacent to a die. A dam is positioned at the peripheral edges of the heat sink. During a transfer molding process, the dam serves two purposes. First, the dam prevents damage to the mold. Second, the dam prevents encapsulant packaging compound material from flowing onto the heat sink. The dam may be a gasket. The dam may also be a burr created by, for example, stamping the bottom of the heat sink. The dam may include copper, polyamides, and leadlock tape. The dam may be permanently connected to the heat sink or removed following packaging. The dam may be removed mechanically, through the use of heat, or during an electrolytic deflash cycle.
    Type: Application
    Filed: August 12, 2003
    Publication date: February 19, 2004
    Inventor: Richard W. Wensel
  • Patent number: 6677681
    Abstract: An encapsulant molding technique used in chip-on-board encapsulation wherein a residual organic compound layer on the surface of a substrate is used to facilitate removal of unwanted encapsulant material. An organic compound layer which inherently forms on the substrate during the fabrication of the substrate or during various chip attachment processes is masked in a predetermined location with a mask. The substrate is then cleaned to remove the organic compound layer. The mask protects the masked portion of the organic material layer which becomes a release layer to facilitate gate break. An encapsulant mold is placed over the substrate and chip and an encapsulant material is injected into the encapsulant mold cavity through an interconnection channel. The release layer is formed in a position to reside as the bottom of the interconnection channel. Preferably, the interconnection channel has a gate adjacent the encapsulant mold cavity.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: January 13, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Publication number: 20040004274
    Abstract: A semiconductor device includes a heat sink adjacent to a die. A dam is positioned at the peripheral edges of the heat sink. During a transfer molding process, the dam serves two purposes. First, the dam prevents damage to the mold. Second, the dam prevents encapsulant packaging compound material from flowing onto the heat sink. The dam may be a gasket. The dam may also be a burr created by, for example, stamping the bottom of the heat sink. The dam may include copper, polyamides, and leadlock tape. The dam may be permanently connected to the heat sink for removal following packaging. The dam may be removed mechanically, through the use of heat, or during an electrolytic deflash cycle.
    Type: Application
    Filed: June 19, 2003
    Publication date: January 8, 2004
    Inventor: Richard W. Wensel
  • Patent number: 6664646
    Abstract: An encapsulant molding technique used in chip-on-board encapsulation wherein a residual organic compound layer on the surface of a substrate is used to facilitate removal of unwanted encapsulant material. An organic compound layer which inherently forms on the substrate during the fabrication of the substrate or during various chip attachment processes is masked in a predetermined location with a mask. The substrate is then cleaned to remove the organic compound layer. The mask protects the masked portion of the organic material layer which becomes a release layer to facilitate gate break. An encapsulant mold is placed over the substrate and chip and an encapsulant material is injected into the encapsulant mold cavity through an interconnection channel. The release layer is formed in a position to reside as the bottom of the interconnection channel. Preferably, the interconnection channel has a gate adjacent the encapsulant mold cavity.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: December 16, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Patent number: 6583504
    Abstract: A semiconductor device includes a heat sink adjacent to a die. A dam is positioned at the peripheral edges of the heat sink. During a transfer molding process, the dam serves two purposes. First, the dam prevents damage to the mold. Second, the dam prevents encapsulant packaging compound material from flowing onto the heat sink. The dam may be a gasket. The dam may also be a burr created by, for example, stamping the bottom of the heat sink. The dam may include copper, polyamides, and leadlock tape. The dam may be permanently connected to the heat sink for removal following packaging. The dam may be removed mechanically, through the use of heat, or during an electrolytic deflash cycle.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: June 24, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Patent number: 6576057
    Abstract: An apparatus and method for evenly applying an atomized adhesive for bonding a die to a leadframe are disclosed. In one embodiment, the apparatus includes a hood in communication with an air supply and a vacuum plenum. The hood and vacuum plenum encompass a semiconductor device component located in a target area during adhesive application so that the adhesive is selectively applied to specific portions of the leadframe or other semiconductor device component and adhesive is not allowed outside the system. A mask or stencil may be employed to further prevent the application of adhesive to undesired areas. An air purge may be employed to direct the adhesive mist toward the component to be coated. In another embodiment, a fine adhesive spray is directed against the surface of the workpiece to be coated, selected areas being masked to prevent coating. Wafers may be coated as well as leadframes.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: June 10, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Patent number: 6555898
    Abstract: The present invention provides a packaged chip that includes at least one dam disposed between the chip and interposer, blocking an encapsulant flow path in the package formed by the assembly of the interposer and chip. In one preferred embodiment, the dam comprises a lead-like structure formed on the interposer that closes an encapsulant flow path in the package. The invention further provides a novel interposer that may be assembled with a chip into the novel packaged chip. Methods are also provided for making the packaged chip and the interposer.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: April 29, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Patent number: 6555412
    Abstract: The present invention provides a packaged chip that includes at least one dam disposed between the chip and interposer, blocking an encapsulant flow path in the package formed by the assembly of the interposer and chip. In one preferred embodiment, the dam comprises a lead-like structure formed on the interposer that closes an encapsulant flow path in the package. The invention further provides a novel interposer that may be assembled with a chip into the novel packaged chip. Methods are also provided for making the packaged chip and the interposer.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: April 29, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Patent number: 6545368
    Abstract: An encapsulant molding technique used in chip-on-board encapsulation wherein an oxidizable metal layer is patterned on a substrate and the oxidizable metal layer is oxidized to facilitate removal of unwanted encapsulant material. The oxidizable metal layer which adheres to the substrate is applied over a specific portion of the substrate. The oxidizable metal layer is oxidized to form a metal oxide layer which does not adhere to encapsulant materials.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: April 8, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Patent number: 6524960
    Abstract: An encapsulant molding technique used in chip-on-board encapsulation wherein a residual organic compound layer on the surface of a substrate is used to facilitate removal of unwanted encapsulant material. An organic compound layer which inherently forms on the substrate during the fabrication of the substrate or during various chip attachment processes is masked in a predetermined location with a mask. The substrate is then cleaned to remove the organic compound layer. The mask protects the masked portion of the organic material layer which becomes a release layer to facilitate gate break. An encapsulant mold is placed over the substrate and chip and an encapsulant material is injected into the encapsulant mold cavity through an interconnection channel. The release layer is formed in a position to reside as the bottom of the interconnection channel. Preferably, the interconnection channel has a gate adjacent the encapsulant mold cavity.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: February 25, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Patent number: 6518186
    Abstract: An encapsulant molding technique used in chip-on-board encapsulation wherein a residual organic compound layer on the surface of a substrate is used to facilitate removal of unwanted encapsulant material. An organic compound layer which inherently forms on the substrate during the fabrication of the substrate or during various chip attachment processes is masked in a predetermined location with a mask. The substrate is then cleaned to remove the organic compound layer. The mask protects the masked portion of the organic material layer which becomes a release layer to facilitate gate break. An encapsulant mold is placed over the substrate and chip and an encapsulant material is injected into the encapsulant mold cavity through an interconnection channel. The release layer is formed in a position to reside as the bottom of the interconnection channel. Preferably, the interconnection channel has a gate adjacent the encapsulant mold cavity.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: February 11, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Patent number: 6486004
    Abstract: An apparatus and method for evenly applying an atomized adhesive for bonding a die to a leadframe is disclosed. In one embodiment, the apparatus includes a hood in communication with an air supply and a vacuum plenum that encompass a semiconductor device component located in a target area during adhesive application so that the adhesive is selectively applied to specific portions of the leadframe or other semiconductor device component and adhesive is not allowed outside the system. A mask or stencil may be employed for further prevention of adhesive application to undesired areas. An air purge may be employed to direct the adhesive mist toward the component to be coated. In another embodiment, a fine adhesive spray is directed against the surface of the workpiece to be coated, selected areas being masked to prevent coating. Wafers may be coated as well as leadframes.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: November 26, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Richard W. Wensel
  • Publication number: 20020166695
    Abstract: A method and device for providing a relief area on the surface of a molded I/C package. Specifically, a method of reducing delamination at the gate area of a molded I/C package by disposing an area of patterned metal traces on the substrate surface to form a relief area. The relief area will permit the I/C package to be broken away form the molding apparatus while reducing the possibility of delamination or Au/Cu burs at the gate area.
    Type: Application
    Filed: April 23, 2002
    Publication date: November 14, 2002
    Inventors: Stephen L. James, Richard W. Wensel, Brad D. Rumsey
  • Patent number: 6473311
    Abstract: A method and device for providing a relief area on the surface of a molded I/C package. Specifically, a method of reducing delamination at the gate area of a molded I/C package by disposing an area of patterned metal traces on the substrate surface to form a relief area. The relief area will permit the I/C package to be broken away form the molding apparatus while reducing the possibility of delamination or Au/Cu burs at the gate area.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: October 29, 2002
    Assignee: Micro Technology, Inc.
    Inventors: Stephen L. James, Richard W. Wensel, Brad D. Rumsey