Patents by Inventor Richard Wise

Richard Wise has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250087498
    Abstract: Tin oxide films are used as mandrels in semiconductor device manufacturing. In one implementation the process starts by patterning a tin oxide layer using at least one of a hydrogen-based etch chemistry and a chlorine-based etch chemistry, and using patterned photoresist as a mask, thereby providing a substrate having a plurality of protruding tin oxide features (mandrels). Next, a conformal layer of spacer material is formed both on the horizontal surfaces and on the sidewalls of the mandrels. The spacer material is then removed from the horizontal surfaces exposing the tin oxide material of the mandrels, without fully removing the spacer material residing at the sidewalls of the mandrels. Next, mandrels are selectively removed (e.g., using hydrogen-based etch chemistry), while leaving the spacer material that resided at the sidewalls of the mandrels. The resulting spacers can be used for patterning underlying layers on the substrate.
    Type: Application
    Filed: November 22, 2024
    Publication date: March 13, 2025
    Inventors: Jengyi Yu, Samantha S.H. Tan, Seongjun Heo, Boris Volosskiy, Sivananda Krishnan Kanakasabapathy, Richard Wise, Yang Pan, Hui-Jung Wu
  • Publication number: 20250059767
    Abstract: An exemplary shingle includes at least one coated shingle sheet defining a headlap portion and a tab portion each having opposed upper and lower surfaces. A first line of adhesive is adhered to one of the upper surface of the headlap portion and the lower surface of the tab portion, and includes a first thermally activated adhesive material. A second line of adhesive is adhered to one of the upper surface of the headlap portion and the lower surface of the tab portion, and includes a second thermally activated adhesive material having a minimum activation temperature less than a minimum activation temperature of the first thermally activated adhesive material.
    Type: Application
    Filed: November 6, 2024
    Publication date: February 20, 2025
    Inventors: David P. Aschenbeck, James E. Loftus, Donn R. Vermilion, Lawrence J. Grubka, Carmen Anthony LaTorre, Bert W. Elliott, Christopher Kasprzak, Edward Richard Harrington, JR., Christina Marie Wise, William Edwin Smith, Shu Situ-Loewenstein, Jonathan M. Verhoff, Benjamin Barszcz, David Michael Ploense
  • Patent number: 12183604
    Abstract: Methods for making thin-films on semiconductor substrates, which may be patterned using EUV, include: depositing the organometallic polymer-like material onto the surface of the semiconductor substrate, exposing the surface to EUV to form a pattern, and developing the pattern for later transfer to underlying layers. The depositing operations may be performed by chemical vapor deposition (CVD), atomic layer deposition (ALD), and ALD with a CVD component, such as a discontinuous, ALD-like process in which metal precursors and counter-reactants are separated in either time or space.
    Type: Grant
    Filed: March 15, 2023
    Date of Patent: December 31, 2024
    Assignee: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha S. H. Tan, Mohammed Haroon Alvi, Richard Wise, Yang Pan, Richard Alan Gottscho, Adrien LaVoie, Sivananda Krishnan Kanakasabapathy, Timothy William Weidman, Qinghuang Lin, Jerome S. Hubacek
  • Patent number: 12183589
    Abstract: Tin oxide films are used as mandrels in semiconductor device manufacturing. In one implementation the process starts by patterning a tin oxide layer using at least one of a hydrogen-based etch chemistry and a chlorine-based etch chemistry, and using patterned photoresist as a mask, thereby providing a substrate having a plurality of protruding tin oxide features (mandrels). Next, a conformal layer of spacer material is formed both on the horizontal surfaces and on the sidewalls of the mandrels. The spacer material is then removed from the horizontal surfaces exposing the tin oxide material of the mandrels, without fully removing the spacer material residing at the sidewalls of the mandrels. Next, mandrels are selectively removed (e.g., using hydrogen-based etch chemistry), while leaving the spacer material that resided at the sidewalls of the mandrels. The resulting spacers can be used for patterning underlying layers on the substrate.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: December 31, 2024
    Assignee: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha S. H. Tan, Seongjun Heo, Boris Volosskiy, Sivananda Krishnan Kanakasabapathy, Richard Wise, Yang Pan, Hui-Jung Wu
  • Publication number: 20240429045
    Abstract: Provided herein are methods and systems for reducing roughness of an EUV resist and improving etched features. The methods involve descumming an EUV resist, filling divots of the EUV resist, and protecting EUV resists with a cap. The resulting EUV resist has smoother features and increased selectivity to an underlying layer, which improves the quality of etched features. Following etching of the underlying layer, the cap may be removed.
    Type: Application
    Filed: June 27, 2024
    Publication date: December 26, 2024
    Inventors: Jengyi Yu, Samantha S.H. Tan, Liu Yang, Chen-Wei Liang, Boris Volosskiy, Richard Wise, Yang Pan, Da Li, Ge Yuan, Andrew Liang
  • Patent number: 12122554
    Abstract: A resealable beverage can lid has a lid having a top side having a score line forming a panel, a first rivet formed in the lid and extending outwardly from the top side of the lid, a second rivet formed in the panel and extending outwardly from the top side of the lid, and a tab portion comprising a main body portion having a rear lifting portion, a first forward rupturing portion, a second forward rupturing portion, an opening formed in the body portion for forming a tongue having a first aperture, a second aperture, the tab portion connected to the first rivet through the first aperture and the second rivet through the second aperture.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: October 22, 2024
    Assignee: SBH, INC.
    Inventors: Steven S. Schuver, Richard Wise
  • Patent number: 12094711
    Abstract: Tin oxide film on a semiconductor substrate is etched selectively with an etch selectivity of at least 10 in a presence of silicon (Si), carbon (C), or a carbon-containing material (e.g., photoresist) by exposing the substrate to a process gas comprising hydrogen (H2) and a hydrocarbon (e.g., at a hydrogen/hydrocarbon ratio of at least 5), such that a carbon-containing polymer is formed on the substrate. In some embodiments an apparatus for processing a semiconductor substrate includes a process chamber configured for housing the semiconductor substrate and a controller having program instructions on a non-transitory medium for causing selective etching of a tin oxide layer on a substrate in a presence of silicon, carbon, or a carbon-containing material by exposing the substrate to a plasma formed in a process gas that includes H2 and a hydrocarbon.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: September 17, 2024
    Assignee: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha S. H. Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Patent number: 12062538
    Abstract: Provided herein are methods and systems for reducing roughness of an EUV resist and improving etched features. The methods involve descumming an EUV resist, filling divots of the EUV resist, and protecting EUV resists with a cap. The resulting EUV resist has smoother features and increased selectivity to an underlying layer, which improves the quality of etched features. Following etching of the underlying layer, the cap may be removed.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: August 13, 2024
    Assignee: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha S. H. Tan, Liu Yang, Chen-Wei Liang, Boris Volosskiy, Richard Wise, Yang Pan, Da Li, Ge Yuan, Andrew Liang
  • Publication number: 20240263301
    Abstract: Methods and apparatuses for processing semiconductor substrates in an integration scheme to form chamferless vias are provided herein. Methods include bifurcating etching of dielectric by depositing a conformal removable sealant layer having properties for selective removal relative to dielectric material without damaging dielectric material. Some methods include forming an ashable conformal sealant layer. Methods also include forming hard masks including a Group IV metal and removing conformal removable sealant layers and hard masks in one operation using same etching chemistries.
    Type: Application
    Filed: April 12, 2024
    Publication date: August 8, 2024
    Inventors: Sivananda Krishnan Kanakasabapathy, Hui-Jung Wu, Richard Wise, Arpan Pravin Mahorowala
  • Patent number: 12051589
    Abstract: Thin tin oxide films are used as spacers in semiconductor device manufacturing. In one implementation, formation of spacers involves deposition of a tin oxide layer on a semiconductor substrate having multiple protruding features. The deposition is performed in a deposition apparatus having a controller with program instructions configured to cause sequential contacting of the semiconductor substrate with a tin-containing precursor and an oxygen-containing precursor such as to coat the semiconductor substrate having the protruding features with a tin oxide layer. Next, tin oxide film is removed from horizontal surfaces, without being completely removed from the sidewalls of the protruding features. Next, the material of protruding features is etched away, leaving tin oxide spacers on the semiconductor substrate.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: July 30, 2024
    Assignee: Lam Research Corporation
    Inventors: David Charles Smith, Richard Wise, Arpan Pravin Mahorowala, Patrick A van Cleemput, Bart J. van Schravendijk
  • Patent number: 11987876
    Abstract: Methods and apparatuses for processing semiconductor substrates in an integration scheme to form chamferless vias are provided herein. Methods include bifurcating etching of dielectric by depositing a conformal removable sealant layer having properties for selective removal relative to dielectric material without damaging dielectric material. Some methods include forming an ashable conformal sealant layer. Methods also include forming hard masks including a Group IV metal and removing conformal removable sealant layers and hard masks in one operation using same etching chemistries.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: May 21, 2024
    Assignee: Lam Research Corporation
    Inventors: Sivananda Krishnan Kanakasabapathy, Hui-Jung Wu, Richard Wise, Arpan Mahorowala
  • Publication number: 20240145272
    Abstract: Methods for making thin-films on semiconductor substrates, which may be patterned using EUV, include: depositing the organometallic polymer-like material onto the surface of the semiconductor substrate, exposing the surface to EUV to form a pattern, and developing the pattern for later transfer to underlying layers. The depositing operations may be performed by chemical vapor deposition (CVD), atomic layer deposition (ALD), and ALD with a CVD component, such as a discontinuous, ALD-like process in which metal precursors and counter-reactants are separated in either time or space.
    Type: Application
    Filed: October 5, 2023
    Publication date: May 2, 2024
    Inventors: Jengyi YU, Samantha S.H. TAN, Mohammed Haroon ALVI, Richard WISE, Yang PAN, Richard Alan GOTTSCHO, Adrien LAVOIE, Sivananda Krishnan KANAKASABAPATHY, Timothy William WEIDMAN, Qinghuang LIN, Jerome S. HUBACEK
  • Publication number: 20240030031
    Abstract: Thin tin oxide films can be used in semiconductor device manufacturing. In one implementation, a method of processing a semiconductor substrate includes: providing a semiconductor substrate having a plurality of protruding features residing on an etch stop layer material, and an exposed tin oxide layer in contact with both the protruding features and the etch stop layer material, where the tin oxide layer covers both sidewalls and horizontal surfaces of the protruding features; and then completely removing the tin oxide layer from horizontal surfaces of the semiconductor substrate without completely removing the tin oxide layer residing at the sidewalls of the protruding features. Next, the protruding features can be removed without completely removing the tin oxide layer that resided at the sidewalls of the protruding features, thereby forming tin oxide spacers.
    Type: Application
    Filed: October 6, 2023
    Publication date: January 25, 2024
    Inventors: David Charles Smith, Richard Wise, Arpan Mahorowala, Patrick A. Van Cleemput, Bart J. Van Schravendijk
  • Patent number: 11784047
    Abstract: Thin tin oxide films can be used in semiconductor device manufacturing. In one implementation, a method of processing a semiconductor substrate includes: providing a semiconductor substrate having a plurality of protruding features residing on an etch stop layer material, and an exposed tin oxide layer in contact with both the protruding features and the etch stop layer material, where the tin oxide layer covers both sidewalls and horizontal surfaces of the protruding features; and then completely removing the tin oxide layer from horizontal surfaces of the semiconductor substrate without completely removing the tin oxide layer residing at the sidewalls of the protruding features. Next, the protruding features can be removed without completely removing the tin oxide layer that resided at the sidewalls of the protruding features, thereby forming tin oxide spacers.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: October 10, 2023
    Assignee: Lam Research Corporation
    Inventors: David Charles Smith, Richard Wise, Arpan Pravin Mahorowala, Patrick A. van Cleemput, Bart J. van Schravendijk
  • Publication number: 20230314946
    Abstract: The present disclosure relates to a film formed with a metal precursor and an organic precursor, as well as methods for forming and employing such films. The film can be employed as a photopatternable film or a radiation-sensitive film. In particular embodiments, the film includes alternating layers of metal-containing layers and organic layers. In other embodiments, the film includes a matrix of deposited metal and organic constituents.
    Type: Application
    Filed: July 16, 2021
    Publication date: October 5, 2023
    Inventors: Eric Calvin Hansen, Timothy William Weidman, Chenghao Wu, Qinghuang Lin, Kyle Jordan Blakeney, Adrien LaVoie, Sivananda Krishnan Kanakasabapathy, Samantha S.H. Tan, Richard Wise, Yang Pan, Younghee Lee, Katie Lynn Nardi, Kevin Li Gu, Boris Volosskiy
  • Publication number: 20230290657
    Abstract: Methods for making thin-films on semiconductor substrates, which may be patterned using EUV, include: depositing the organometallic polymer-like material onto the surface of the semiconductor substrate, exposing the surface to EUV to form a pattern, and developing the pattern for later transfer to underlying layers. The depositing operations may be performed by chemical vapor deposition (CVD), atomic layer deposition (ALD), and ALD with a CVD component, such as a discontinuous, ALD-like process in which metal precursors and counter-reactants are separated in either time or space.
    Type: Application
    Filed: March 15, 2023
    Publication date: September 14, 2023
    Inventors: Jengyi Yu, Samantha S.H. Tan, Mohammed Haroon Alvi, Richard Wise, Yang Pan, Richard Alan Gottscho, Adrien LaVoie, Sivananda Krishnan Kanakasabapathy, Timothy William Weidman, Qinghuang Lin, Jerome S. Hubacek
  • Publication number: 20230044691
    Abstract: A resealable beverage can lid has a lid having a top side having a score line forming a panel, a first rivet formed in the lid and extending outwardly from the top side of the lid, a second rivet formed in the panel and extending outwardly from the top side of the lid, and a tab portion comprising a main body portion having a rear lifting portion, a first forward rupturing portion, a second forward rupturing portion, an opening formed in the body portion for forming a tongue having a first aperture, a second aperture, the tab portion connected to the first rivet through the first aperture and the second rivet through the second aperture.
    Type: Application
    Filed: October 19, 2022
    Publication date: February 9, 2023
    Inventors: Steven S. Schuver, Richard Wise
  • Publication number: 20230045336
    Abstract: Methods for making thin-films on semiconductor substrates, may be patterned using EUV, include: depositing the organometallic polymer-like material onto the surface of the semiconductor substrate, exposing the surface to EUV to form a pattern, and developing the pattern for later transfer to underlying layers. The depositing operations may be performed by chemical vapor deposition (CVD), atomic layer deposition (ALD), and ALD with a CVD component, such as a discontinuous, ALD-like process in which metal precursors and counter-reactants are separated in either time or space.
    Type: Application
    Filed: July 2, 2021
    Publication date: February 9, 2023
    Inventors: Jengyi Yu, Samantha S.H. Tan, Mohammed Haroon Alvi, Richard Wise, Yang Pan, Richard Alan Gottscho, Adrien LaVoie, Sivananda Krishnan Kanakasabapathy, Timothy William Weidman, Qinghuang Lin, Jerome S. Hubacek
  • Publication number: 20220270877
    Abstract: A method of processing a substrate includes: providing a substrate having one or more mandrels comprising a mandrel material, wherein a layer of a spacer material coats horizontal surfaces and sidewalls of the one or more mandrels; and etching and completely removing the layer of the spacer material from the horizontal surfaces of the one or more mandrels and thereby exposing the mandrel material, without completely removing the spacer material residing at the sidewalls of the one or more mandrels. The etching includes exposing the substrate to a plasma formed using a mixture comprising a first gas and a polymer-forming gas, and wherein the etching comprises forming a polymer on the substrate. Polymer-forming gas may include carbon (C) and hydrogen (H).
    Type: Application
    Filed: February 10, 2022
    Publication date: August 25, 2022
    Inventors: Jengyi Yu, Samantha S.H. Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Publication number: 20220216050
    Abstract: Provided herein are methods and systems for reducing roughness of an EUV resist and improving etched features. The methods involve descumming an EUV resist, filling divots of the EUV resist, and protecting EUV resists with a cap. The resulting EUV resist has smoother features and increased selectivity to an underlying layer, which improves the quality of etched features. Following etching of the underlying layer, the cap may be removed.
    Type: Application
    Filed: April 14, 2020
    Publication date: July 7, 2022
    Applicant: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha S.H. Tan, Liu Yang, Chen-Wei Liang, Boris Volosskiy, Richard Wise, Yang Pan, Da Li, Ge Yuan, Andrew Liang