Patents by Inventor Rick B. Watson

Rick B. Watson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220401934
    Abstract: A skeletal isomerization process for isomerizing olefins is described. The process utilizes added hydrogen as a diluent to extend the isomerization catalyst's lifetime and increase the yield of skeletal isomer products compared to process that utilize inert gas diluents. The methods of this disclosure can be applied to feeds containing iso-olefins (for the production of linear olefins) or linear olefins (for the production of iso-olefins).
    Type: Application
    Filed: June 3, 2022
    Publication date: December 22, 2022
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Rick B. Watson, David W. Leyshon, Kevin P. Fogarty
  • Patent number: 11440858
    Abstract: A skeletal isomerization process for isomerizing olefins is described. The process includes the steps of feeding an olefin-containing feed to a reactor at a space velocity of 1-100 hr?1 for a first period of time at a first temperature, followed by discontinuing, or stopping, the olefin-containing feed for a second period of time while maintaining the reactor at a second temperature, before resuming the flow of the olefin-containing feed for a third period of time. The methods of this disclosure increase the yield of the skeletal isomers product while reducing the production of C5+ heavy olefins. Additionally, the methods of this disclosure can be applied to feeds containing iso-olefins (for the production of linear olefins) or linear olefins (for the production of iso-olefins).
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: September 13, 2022
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Rick B. Watson, David W. Leyshon
  • Publication number: 20220135499
    Abstract: A skeletal isomerization process for isomerizing olefins is described. The process includes the steps of feeding an olefin-containing feed to a reactor having an isomerization catalyst with a small crystalline size that is less than 1 ?m in all directions. The small crystalline size increases the life of the catalyst and the yield of skeletal isomer products, as well as reducing the formation of heavy C5+ olefin byproducts, as compared to processes using conventional catalyst with crystalline sizes of 1 ?m or more.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 5, 2022
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Rick B. Watson, David W. Leyshon
  • Publication number: 20220135500
    Abstract: A skeletal isomerization process for isomerizing olefins is described. The process includes the steps of feeding an olefin-containing feed to a reactor at a space velocity of 1-100 hr?1 for a first period of time at a first temperature, followed by discontinuing, or stopping, the olefin-containing feed for a second period of time while maintaining the reactor at a second temperature, before resuming the flow of the olefin-containing feed for a third period of time. The methods of this disclosure increase the yield of the skeletal isomers product while reducing the production of C5+ heavy olefins. Additionally, the methods of this disclosure can be applied to feeds containing iso-olefins (for the production of linear olefins) or linear olefins (for the production of iso-olefins).
    Type: Application
    Filed: November 5, 2021
    Publication date: May 5, 2022
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Rick B. Watson, David W. Leyshon
  • Patent number: 11261142
    Abstract: Improved systems and methods for producing propylene from olefins including isobutylene is disclosed. The improvements combine streams containing co-produced 1-butene, 2-butene, butadiene, and heavy olefins (C5+) exiting both a metathesis reactor and a skeletal isomerization reactor in a gasoline fractionation tower to remove the heavy olefins. The C4-containing distillate from the gasoline fractionation tower is then fed to a hydroisomerization unit to form mono-olefins and 2-butene. The resulting 2-butene rich stream can then be utilized in metathesis reactions to increase the production of propylene while increasing the lifetime of the metathesis catalyst.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: March 1, 2022
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: David W. Leyshon, Rick B. Watson
  • Publication number: 20210403396
    Abstract: Improved systems and methods for producing propylene from olefins including isobutylene is disclosed. The improvements combine streams containing co-produced 1-butene, 2-butene, butadiene, and heavy olefins (C5+) exiting both a metathesis reactor and a skeletal isomerization reactor in a gasoline fractionation tower to remove the heavy olefins. The C4-containing distillate from the gasoline fractionation tower is then fed to a hydroisomerization unit to form mono-olefins and 2-butene. The resulting 2-butene rich stream can then be utilized in metathesis reactions to increase the production of propylene while increasing the lifetime of the metathesis catalyst.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 30, 2021
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: David W. Leyshon, Rick B. Watson
  • Patent number: 11141719
    Abstract: Disclosed herein are methods of treating a hydroformylation catalyst solution wherein the solution comprises rhodium, polyphosphoramidite ligands, and polyphosphoramidite ligand degradation products and wherein the hydroformylation catalyst solution is used to hydroformylate an olefin in an operating hydroformylation unit. In some embodiments, such methods comprise contacting the catalyst solution with a peroxide in the operating hydroformylation unit.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: October 12, 2021
    Assignee: Dow Technology Investments LLC
    Inventors: Michael A. Brammer, Marinus A. Bigi, Rick B. Watson
  • Patent number: 11033890
    Abstract: Some embodiments of the present invention relate to processes to recover rhodium from a hydroformylation process. In some embodiments, the process to recover rhodium from the hydroformylation process comprises (a) treating a catalyst-containing stream from the hydroformylation process with 2.5 to 20 weight percent, based on the total weight of the stream, of a water-soluble organic amine of the following structure: wherein R32, R33, and R34 are each independently alkyls and ethoxylates, and wherein no more than one of R32, R33, and R34 is alkyl; (b) heating the resulting solution in the presence of syngas to a temperature of at least 65° C. to generate a rhodium-rich phase and a supernatant; and (c) removing the supernatant to recover the rhodium-rich phase.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: June 15, 2021
    Assignee: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Marinus A. Bigi, Rick B. Watson
  • Patent number: 10766839
    Abstract: The present invention relate to processes for converting olefins to alcohols, ethers, or combinations thereof that are suitable for use as a gasoline additive. In one embodiment, the process comprises (a) receiving a feed stream, wherein the feed stream comprises one or more olefins having 2 to 5 carbon atoms in an amount of up to 80% by weight based on the weight of the feed stream; (b) hydroformylating the feed stream in the presence of a catalyst to convert at least 80% of the olefins from the feed stream to oxygenates; (c) separating a product stream from step (b) into an oxygenate stream and a stream comprising unreacted olefins, inerts, the catalyst, and the remaining oxygenates; and (d) treating the oxygenate stream to convert a plurality of the oxygenates into at least one of an alcohol, an ether, or combinations thereof is suitable for use as a gasoline additive.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: September 8, 2020
    Assignee: Dow Technology Investments LLC
    Inventors: Michael C. Becker, Michael A. Brammer, Jason F. Giles, Glenn A. Miller, George R. Phillips, Rick B. Watson, Stephane Wambergue, Martin Lucas Smidt
  • Publication number: 20200269226
    Abstract: Some embodiments of the present invention relate to processes to recover rhodium from a hydroformylation process. In some embodiments, the process to recover rhodium from the hydroformylation process comprises (a) treating a catalyst-containing stream from the hydroformylation process with 2.5 to 20 weight percent, based on the total weight of the stream, of a water-soluble organic amine of the following structure: wherein R32, R33, and R34 are each independently alkyls and ethoxylates, and wherein no more than one of R32, R33, and R34 is alkyl; (b) heating the resulting solution in the presence of syngas to a temperature of at least 65° C. to generate a rhodium-rich phase and a supernatant; and (c) removing the supernatant to recover the rhodium-rich phase.
    Type: Application
    Filed: November 2, 2018
    Publication date: August 27, 2020
    Inventors: Marinus A. Bigi, Rick B. Watson
  • Publication number: 20200047172
    Abstract: Disclosed herein are methods of treating a hydroformylation catalyst solution wherein the solution comprises rhodium, polyphosphoramidite ligands, and polyphosphoramidite ligand degradation products and wherein the hydroformylation catalyst solution is used to hydroformylate an olefin in an operating hydroformylation unit. In some embodiments, such methods comprise contacting the catalyst solution with a peroxide in the operating hydroformylation unit.
    Type: Application
    Filed: November 6, 2017
    Publication date: February 13, 2020
    Inventors: Michael A. Brammer, Marinus A. Bigi, Rick B. Watson
  • Publication number: 20190047930
    Abstract: Embodiments of the present invention relate to processes for converting olefins to alcohols, ethers, or combinations thereof that are suitable for use as a gasoline additive.
    Type: Application
    Filed: February 10, 2017
    Publication date: February 14, 2019
    Inventors: Michael C. Becker, Michael A. Brammer, Jason F. Giles, Glenn A. Miller, George R. Phillips, Rick B. Watson, Stephane Wambergue, Martin Lucas Smidt
  • Patent number: 10131608
    Abstract: A hydroformylation process wherein a water-soluble amine is contacted with the reaction fluid, liquid from the reactor is sent to an extraction zone, and a neutralized phosphorus acidic compound is at least partially removed from the extraction zone.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 20, 2018
    Assignee: Dow Technology Investments LLC
    Inventors: Glenn A. Miller, Thomas C. Eisenschmid, Michael A. Brammer, Michael C. Becker, Rick B. Watson
  • Publication number: 20170233322
    Abstract: A hydroformylation process wherein a water-soluble amine is contacted with the reaction fluid, liquid from the reactor is sent to an extraction zone, and a neutralized phosphorus acidic compound is at least partially removed from the extraction zone.
    Type: Application
    Filed: March 10, 2015
    Publication date: August 17, 2017
    Inventors: Glenn A. Miller, Thomas C. Eisenschmid, Michael A. Brammer, Michael C. Becker, Rick B. Watson
  • Patent number: 9688598
    Abstract: A multi-reaction train hydroformylation process wherein a common product-catalyst separation zone is employed.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: June 27, 2017
    Assignee: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Thomas C. Eisenschmid, Morteza Mokhtarzadeh, Cloid R. Smith, III, Michael C. Becker, George R. Phillips, Michael A. Brammer, Glenn A. Miller, Rick B. Watson, Irvin B. Cox, Edward A. Lord, Martin Smidt
  • Patent number: 9676685
    Abstract: A process for reducing the diene content of an olefin by feeding hydrogen to the process in stages.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: June 13, 2017
    Assignee: Dow Technology Investments LLC
    Inventors: Rick B. Watson, Glenn A. Miller
  • Patent number: 9539566
    Abstract: A process for forming a catalyst from a catalytic metal precursor, a chelating bisphosphite and a bulky monophosphite, with a slightly greater than stoichiometric amount of chelating bisphosphite relative to catalytic metal under a CO partial pressure at least 25 psig.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: January 10, 2017
    Assignee: Dow Technology Investments LLC
    Inventors: Michael A. Brammer, Rick B. Watson, Avery L. Watkins
  • Publication number: 20160257635
    Abstract: A multi-reaction train hydroformylation process wherein a common product-catalyst separation zone is employed.
    Type: Application
    Filed: December 9, 2014
    Publication date: September 8, 2016
    Inventors: Thomas C. Eisenschmid, Morteza Mokhtarzadeh, Cloid R. Smith, III, Michael C. Becker, George R. Phillips, Michael A. Brammer, Glenn A. Miller, Rick B. Watson, Irvin B. Cox, Edward A. Lord, Martin Lucas Smidt
  • Patent number: 9382180
    Abstract: A hydroformylation process that tolerates a high level of methanol in the feed.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: July 5, 2016
    Assignee: Dow Technology Investments LLC
    Inventors: Glenn A. Miller, Thomas C. Eisenschmid, Rick B. Watson, Michael A. Brammer, Michael C. Becker
  • Patent number: 9328047
    Abstract: A process for stabilizing a phosphite ligand against degradation in a hydroformylation reaction fluid, said process comprising adding an epoxide to the reaction fluid, and further comprising separating one or more phosphorus acidic compounds from the reaction fluid by treating the reaction fluid with an aqueous buffer solution under conditions sufficient to neutralize and remove at least some amount of the phosphorus acidic compounds from the reaction fluid.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: May 3, 2016
    Assignee: Dow Technology Investments LLC
    Inventors: Glenn A. Miller, Thomas C. Eisenschmid, Michael A. Brammer, Rick B. Watson