Patents by Inventor Rick D. McVenes

Rick D. McVenes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200147402
    Abstract: An implantable cardiac defibrillator (ICD) system includes an ICD implanted subcutaneously in a patient, a defibrillation lead having a proximal portion coupled to the ICD and a distal portion having a defibrillation electrode configured to deliver a defibrillation or cardioversion shock to a heart of the patient, and a pacing lead that includes a distal portion having one or more electrodes and a proximal portion coupled to the ICD. The distal portion of the pacing lead is implanted at least partially along a posterior side of a sternum of the patient within the anterior mediastinum. The ICD is configured to provide pacing pulses to the heart of the patient via the pacing lead and provide defibrillation shocks to the patient via the defibrillation lead. As such, the implantable cardiac system provides pacing from the substernal space for an extravascular ICD system.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 14, 2020
    Inventors: Amy E. Thompson-Nauman, Melissa G.T. Christie, Paul J. DeGroot, Rick D. McVenes, Becky L. Dolan
  • Publication number: 20200129755
    Abstract: Implantable cardiac pacing systems and methods for providing substernal pacing are described. In one example, a cardiac pacing system includes a pacemaker implanted in a patient and an implantable medical electrical lead. The implantable medical electrical lead includes an elongated lead body having a proximal end and a distal portion, a connector configured to couple to the pacemaker at the proximal end of the elongated lead body, and one or more electrodes along the distal portion of the elongated lead body, wherein the distal portion of the elongated lead body of the lead is implanted substantially within an anterior mediastinum of the patient and the pacemaker is configured to deliver pacing pulses to a heart of the patient.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Amy E. Thompson-Nauman, Melissa G.T. Christie, Rick D. McVenes
  • Publication number: 20200069952
    Abstract: Substernal implantable cardioveter-defibrillator (ICD) systems and methods for providing substernal electrical stimulation therapy to treat malignant tachyarrhythmia, e.g., ventricular tachycardia (VT) and ventricular fibrillation (VF) are described. In one example, an implantable cardioveter-defibrillator (ICD) system includes an ICD implanted in a patient and an implantable medical electrical lead. The lead includes an elongated lead body having a proximal end and a distal portion, a connector at the proximal end of the lead body configured to couple to the ICD, and one or more electrodes along the distal portion of the elongated lead body. The distal portion of the elongated lead body of the lead is implanted substantially within an anterior mediastinum of the patient and the ICD is configured to deliver electrical stimulation to a heart of the patient using the one or more electrodes.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Amy E. Thompson-Nauman, Melissa G.T. Christie, Paul J. DeGroot, Rick D. McVenes, Becky L. Dolan
  • Patent number: 10556117
    Abstract: An implantable cardiac defibrillator (ICD) system includes an ICD implanted subcutaneously in a patient, a defibrillation lead having a proximal portion coupled to the ICD and a distal portion having a defibrillation electrode configured to deliver a defibrillation or cardioversion shock to a heart of the patient, and a pacing lead that includes a distal portion having one or more electrodes and a proximal portion coupled to the ICD. The distal portion of the pacing lead is implanted at least partially along a posterior side of a sternum of the patient within the anterior mediastinum. The ICD is configured to provide pacing pulses to the heart of the patient via the pacing lead and provide defibrillation shocks to the patient via the defibrillation lead. As such, the implantable cardiac system provides pacing from the substernal space for an extravascular ICD system.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 11, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Paul J. DeGroot, Rick D. McVenes, Becky L. Dolan
  • Patent number: 10532203
    Abstract: Implantable cardiac pacing systems and methods for providing substernal pacing are described. In one example, a cardiac pacing system includes a pacemaker implanted in a patient and an implantable medical electrical lead. The implantable medical electrical lead includes an elongated lead body having a proximal end and a distal portion, a connector configured to couple to the pacemaker at the proximal end of the elongated lead body, and one or more electrodes along the distal portion of the elongated lead body, wherein the distal portion of the elongated lead body of the lead is implanted substantially within an anterior mediastinum of the patient and the pacemaker is configured to deliver pacing pulses to a heart of the patient.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: January 14, 2020
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Rick D. McVenes
  • Patent number: 10525272
    Abstract: Implantable cardiac systems and methods for providing substernal pacing in an ICD system are described. In one example, an implantable cardiac system comprises an ICD system and an implantable leadless pacing device (LPD) communicatively coupled to the ICD system. The ICD system includes an ICD and an implantable defibrillation lead having a proximal portion coupled to the ICD and a distal portion having a defibrillation electrode configured to deliver a defibrillation shock to a heart of the patient. The LPD includes a housing, a first electrode on the housing, a second electrode on the housing, and a pulse generator within the housing and electrically coupled to the first electrode and the second electrode. The housing of the LPD is implanted substantially within an anterior mediastinum of the patient and the pulse generator is configured to deliver pacing pulses to a heart via the first and second electrodes.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: January 7, 2020
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Paul J. DeGroot, Rick D. McVenes
  • Patent number: 10471267
    Abstract: Substernal implantable cardioverter-defibrillator (ICD) systems and methods for providing substernal electrical stimulation therapy to treat malignant tachyarrhythmia, e.g., ventricular tachycardia (VT) and ventricular fibrillation (VF) are described. In one example, an implantable cardioverter-defibrillator (ICD) system includes an ICD implanted in a patient and an implantable medical electrical lead. The lead includes an elongated lead body having a proximal end and a distal portion, a connector at the proximal end of the lead body configured to couple to the ICD, and one or more electrodes along the distal portion of the elongated lead body. The distal portion of the elongated lead body of the lead is implanted substantially within an anterior mediastinum of the patient and the ICD is configured to deliver electrical stimulation to a heart of the patient using the one or more electrodes.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: November 12, 2019
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Paul J. DeGroot, Rick D. McVenes, Becky L. Dolan
  • Publication number: 20190262056
    Abstract: Devices, systems, and methods for treating pulmonary conditions, such as COPD and asthma, by denervating bronchial tissue using cryoablation. In one embodiment, a device for bronchial denervation comprises: an elongate body having a distal portion and a proximal portion opposite the distal portion; a treatment element at the distal portion of the elongate body; and a first recording electrode located distal to the treatment element and a second recording electrode located proximal to the treatment element, the first and second recording electrodes being configured to record electromyograms. In one embodiment, the device includes a fluid delivery element that is within the treatment element and that has a plurality of orifices aligned with an equatorial portion of the treatment element.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 29, 2019
    Inventors: Zhongping YANG, Linnea R. LENTZ, Rick D. MCVENES, Dan WITTENBERGER
  • Publication number: 20190232053
    Abstract: An implantable medical lead having an elongated lead body extending from a proximal end to a distal end, at least one conductor extending within the lead body from the proximal end to the distal end, and a fixation member having a proximal end and a distal end, the proximal end of the electrode configured to be electrically coupled to the distal end of the lead body.
    Type: Application
    Filed: January 31, 2018
    Publication date: August 1, 2019
    Inventors: Zhongping Yang, Andrea Asleson, Gonzalo Martinez, Rick D. McVenes, Christopher W. Storment
  • Publication number: 20190083801
    Abstract: An implantable medical device has a housing having a proximal end, a distal end and an outer sidewall extending from the proximal end to the distal end. A fixation sheath includes a housing sheath portion extending along the outer sidewall of the housing, and a fixation member portion extending from the housing sheath portion. The housing sheath portion is advanceable from a first position along the outer sidewall of the housing in which the fixation member portion is retracted toward the proximal end of the housing to a second position along the outer sidewall of the housing in which the fixation member portion is deployed to extend away from the housing distal end for anchoring the implantable medical device at an implant site.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Zhongping YANG, Thomas A. ANDERSON, Yong K. CHO, Becky L. DOLAN, Rick D. MCVENES
  • Publication number: 20170319863
    Abstract: Implantable cardiac systems and methods for providing substernal pacing in an ICD system are described. In one example, an implantable cardiac system comprises an ICD system and an implantable leadless pacing device (LPD) communicatively coupled to the ICD system. The ICD system includes an ICD and an implantable defibrillation lead having a proximal portion coupled to the ICD and a distal portion having a defibrillation electrode configured to deliver a defibrillation shock to a heart of the patient. The LPD includes a housing, a first electrode on the housing, a second electrode on the housing, and a pulse generator within the housing and electrically coupled to the first electrode and the second electrode. The housing of the LPD is implanted substantially within an anterior mediastinum of the patient and the pulse generator is configured to deliver pacing pulses to a heart via the first and second electrodes.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventors: Amy E. THOMPSON-NAUMAN, Melissa G.T. CHRISTIE, Paul J. DEGROOT, Rick D. MCVENES
  • Patent number: 9717923
    Abstract: Implantable cardiac systems and methods for providing substernal pacing in an ICD system are described. In one example, an implantable cardiac system comprises an ICD system and an implantable leadless pacing device (LPD) communicatively coupled to the ICD system. The ICD system includes an ICD and an implantable defibrillation lead having a proximal portion coupled to the ICD and a distal portion having a defibrillation electrode configured to deliver a defibrillation shock to a heart of the patient. The LPD includes a housing, a first electrode on the housing, a second electrode on the housing, and a pulse generator within the housing and electrically coupled to the first electrode and the second electrode. The housing of the LPD is implanted substantially within an anterior mediastinum of the patient and the pulse generator is configured to deliver pacing pulses to a heart via the first and second electrodes.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: August 1, 2017
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Paul J. DeGroot, Rick D. McVenes
  • Patent number: 9517336
    Abstract: A fixation member of an electrode assembly for an implantable medical device includes a tissue engaging portion extending along a circular path, between a piercing distal tip thereof and a fixed end of the member. The circular path extends around a longitudinal axis of the assembly. A helical structure of the assembly, which includes an electrode surface formed thereon and a piercing distal tip, also extends around the longitudinal axis and is located within a perimeter of the circular path. The tissue engaging portion of the fixation member extends from the distal tip thereof in a direction along the circular path that is the same as that in which the helical structure extends from the distal tip thereof. The electrode assembly may include a pair of the fixation members, wherein each tissue engaging portion may extend approximately one half turn along the circular path.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: December 13, 2016
    Assignee: Medtronic, Inc.
    Inventors: Michael D Eggen, Zhongping Yang, Rick D McVenes, Noelle C. Hurtig, Raymond W Usher
  • Patent number: 9421382
    Abstract: A method and medical device for monitoring patient medication compliance that includes a plurality of electrodes to deliver a pacing therapy and a processor configured to determine a pacing threshold in response to the delivered pacing therapy, determine whether there is a change in the pacing threshold, and determine patient medication compliance in response to the determined changes.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: August 23, 2016
    Assignee: Medtronic, Inc.
    Inventors: Michael J Ebert, Amy Thompson-Nauman, Nathan A Grenz, Rick D McVenes
  • Publication number: 20160175584
    Abstract: A reservoir of a system for deploying an implantable lead to an extravascular location delivers a flow of fluid through a lumen of one or both of a tunneling tool and an introducer of the system. In some cases, the tunneling tool includes a pressure sensor assembly for monitoring a change in a pressure of the flow through the lumen thereof. Alternately, or in addition, a flow-controlled passageway, through which the flow of fluid from the reservoir is delivered to the lumen of the introducer, includes a compliant chamber to hold a reserve of the fluid. Fluid from the reserve may be drawn into the lumen of the introducer as the tunneling tool is withdrawn therefrom. Alternately, the introducer may include a chamber located between two seals, wherein fluid that fills the chamber is drawn distally into the lumen of the introducer, as the tunneling tool is withdrawn therefrom.
    Type: Application
    Filed: November 9, 2015
    Publication date: June 23, 2016
    Inventors: Ronald A. DRAKE, Kenneth C. GARDESKI, Zhongping YANG, Rick D. MCVENES
  • Patent number: 9220913
    Abstract: Techniques and methods for determining the number and type of leads that are connected to an implantable medical device (IMD) system are disclosed. The IMD system is configured having at least two modes of operation, the modes of operation corresponding to the number and type of leads that are coupled to the IMD system. In accordance with aspects of the disclosure, one of the at least two modes may be selected based on the determination of the number and type of leads that are connected to the IMD system.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: December 29, 2015
    Assignee: Medtronics, Inc.
    Inventors: Melissa G. T. Christie, Amy E. Thompson-Nauman, Becky L. Dolan, Paul J. DeGroot, Rick D. McVenes
  • Patent number: 9138157
    Abstract: A method and medical device for monitoring cardiac function in a patient that includes a plurality of electrodes to deliver cardiac pacing therapy, and a processor configured to determine a pacing threshold in response to initial delivery of the pacing therapy, determine whether there is a change in the pacing threshold during initial delivery of the pacing therapy, adjust a delivery parameter of the pacing therapy in response to determining the change in the pacing threshold during initial delivery of the pacing therapy, determine whether there is an increase in the pacing threshold during delivery of the adjusted pacing therapy, and determine hypokalemia in response to the increase in the pacing threshold during delivery of the adjusted pacing therapy being present.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: September 22, 2015
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Michael J Ebert, Rick D McVenes, Nathan A Grenz
  • Patent number: 9131865
    Abstract: A method and medical device for monitoring cardiac function in a patient that includes a plurality of electrodes to deliver cardiac pacing therapy, and a processor configured to determine a pacing threshold in response to initial delivery of the pacing therapy, determine whether there is a change in the pacing threshold during initial delivery of the pacing therapy, adjust a delivery parameter of the pacing therapy in response to determining whether there is a change in the pacing threshold during initial delivery of the pacing therapy, determine whether there is a decrease in the pacing threshold during delivery of the adjusted pacing therapy, and determine hyperkalemia in response to the decrease in the pacing threshold during delivery of the adjusted pacing therapy being present.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: September 15, 2015
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Michael J Ebert, Rick D McVenes, Nathan A Grenz
  • Patent number: 9061123
    Abstract: A delivery catheter includes a pre-formed and resilient heart-wrapping segment. The segment may have a relaxed span that allows the segment to wrap around a left side of a heart from an anterior epicardial surface to a posterior epicardial surface, when the catheter is advanced along the epicardial surface, having been inserted from a sub-xiphoid access site.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: June 23, 2015
    Assignee: Medtronic, Inc.
    Inventors: Johnson E. Goode, Melissa Gene Tanner Christie, Stanten C. Spear, Rick D. McVenes
  • Publication number: 20150165213
    Abstract: A method and medical device for monitoring patient medication compliance that includes a plurality of electrodes to deliver a pacing therapy and a processor configured to determine a pacing threshold in response to the delivered pacing therapy, determine whether there is a change in the pacing threshold, and determine patient medication compliance in response to the determined changes.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 18, 2015
    Inventors: Michael J. Ebert, Amy Thompson-Nauman, Nathan A. Grenz, Rick D. McVenes