Patents by Inventor Rick KUSTRA

Rick KUSTRA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230343586
    Abstract: Embodiments of the present disclosure generally relate to methods for cleaning a chamber comprising introducing a gas to a processing volume of the chamber, providing a first radiofrequency (RF) power having a first frequency of about 40 MHz or greater to a lid of the chamber, providing a second RF power having a second frequency to an electrode disposed in a substrate support within the processing volume, and removing at least a portion of a film disposed on a surface of a chamber component of the chamber. The second frequency is about 10 MHz to about 20 MHz.
    Type: Application
    Filed: June 27, 2023
    Publication date: October 26, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Anup Kumar SINGH, Rick KUSTRA, Vinayak Vishwanath HASSAN, Bhaskar KUMAR, Krishna NITTALA, Pramit MANNA, Kaushik ALAYAVALLI, Ganesh BALASUBRAMANIAN
  • Patent number: 11721545
    Abstract: Embodiments of the present disclosure generally relate to methods of depositing carbon film layers greater than 3,000 ? in thickness over a substrate and surface of a lid of a chamber using dual frequency, top, sidewall and bottom sources. The method includes introducing a gas to a processing volume of a chamber. A first radiofrequency (RF) power is provided having a first frequency of about 40 MHz or greater to a lid of the chamber. A second RF power is provided having a second frequency to a bias electrode disposed in a substrate support within the processing volume. The second frequency is about 10 MHz to about 40 MHz. An additional third RF power is provided having lower frequency of about 400 kHz to about 2 MHz to the bias electrode.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: August 8, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Anup Kumar Singh, Rick Kustra, Vinayak Vishwanath Hassan, Bhaskar Kumar, Krishna Nittala, Pramit Manna, Kaushik Comandoor Alayavalli, Ganesh Balasubramanian
  • Patent number: 11495454
    Abstract: Examples of the present technology include semiconductor processing methods to form boron-containing materials on substrates. Exemplary processing methods may include delivering a deposition precursor that includes a boron-containing precursor to a processing region of a semiconductor processing chamber. A plasma may be formed from the deposition precursor within the processing region of the semiconductor processing chamber. The methods may further include depositing a boron-containing material on a substrate disposed within the processing region of the semiconductor processing chamber, where the substrate is characterized by a temperature of less than or about 50° C. The as-deposited boron-containing material may be characterized by a surface roughness of less than or about 2 nm, and a stress level of less-than or about ?500 MPa. In some embodiments, a layer of the boron-containing material may function as a hardmask.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: November 8, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Rick Kustra, Bo Qi, Abhijit Basu Mallick, Kaushik Alayavalli, Jay D. Pinson
  • Publication number: 20220349050
    Abstract: Embodiments of the present disclosure generally relate a process chamber including a lid and a chamber body coupled to the lid. The chamber body and lid define a process volume and a coupling ring is disposed within the chamber body and below the lid. The coupling ring is coupled to ground or is coupled to a coupling RF power source. A substrate support is disposed and movable within the process volume.
    Type: Application
    Filed: April 25, 2022
    Publication date: November 3, 2022
    Inventors: Rick KUSTRA, Kaushik Comandoor ALAYAVALLI, Jay D. PINSON, II, Sathya Swaroop GANTA, Anup Kumar SINGH
  • Publication number: 20220319841
    Abstract: Examples of the present technology include semiconductor processing methods that provide a substrate in a substrate processing region of a substrate processing chamber, where the substrate is maintained at a temperature less than or about 50° C. A plasma may be generated from the hydrocarbon-containing precursor, and a carbon-containing material may be deposited from the plasma on the substrate. The carbon-containing material may include diamond-like-carbon, and may have greater than or about 60% of the carbon atoms with sp3 hybridized bonds.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Rick Kustra, Bo Qi, Abhijit Basu Mallick, Kaushik Alayavalli, Jay D. Pinson
  • Patent number: 11404263
    Abstract: Examples of the present technology include semiconductor processing methods that provide a substrate in a substrate processing region of a substrate processing chamber, where the substrate is maintained at a temperature less than or about 50° C. An inert precursor and a hydrocarbon-containing precursor may be flowed into the substrate processing region of the substrate processing chamber, where a flow rate ratio of the inert precursor to the hydrocarbon-containing precursor may be greater than or about 10:1. A plasma may be generated from the inert precursor and the hydrocarbon-containing precursor, and a carbon-containing material may be deposited from the plasma on the substrate. The carbon-containing material may include diamond-like-carbon, and may have greater than or about 60% of the carbon atoms with sp3 hybridized bonds.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: August 2, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Rick Kustra, Bo Qi, Abhijit Basu Mallick, Kaushik Alayavalli, Jay D. Pinson
  • Publication number: 20220102141
    Abstract: Embodiments of the present disclosure generally relate to methods of depositing carbon film layers greater than 3,000 ? in thickness over a substrate and surface of a lid of a chamber using dual frequency, top, sidewall and bottom sources. The method includes introducing a gas to a processing volume of a chamber. A first radiofrequency (RF) power is provided having a first frequency of about 40 MHz or greater to a lid of the chamber. A second RF power is provided having a second frequency to a bias electrode disposed in a substrate support within the processing volume. The second frequency is about 10 MHz to about 40 MHz. An additional third RF power is provided having lower frequency of about 400 kHz to about 2 MHz to the bias electrode.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 31, 2022
    Inventors: Anup Kumar SINGH, Rick KUSTRA, Vinayak Vishwanath HASSAN, Bhaskar KUMAR, Krishna NITTALA, Pramit MANNA, Kaushik Comandoor ALAYAVALLI, Ganesh BALASUBRAMANIAN
  • Publication number: 20220093436
    Abstract: A process chamber is provided including a chamber body enclosing an inner volume; a substrate support disposed in the inner volume; an electrode disposed above the substrate support; and an actuator configured to move the electrode in the process chamber to change a distance between the electrode and the substrate support.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Inventor: Rick KUSTRA
  • Publication number: 20220064797
    Abstract: A lid for a process chamber includes a plate having a first surface and a second surface opposite the first surface. The first surface has a recess and a seal groove formed in the first surface and surrounding the recess. The lid further includes an array of holes extending from the recess to the second surface.
    Type: Application
    Filed: August 16, 2021
    Publication date: March 3, 2022
    Inventors: Akshay DHANAKSHIRUR, Juan Carlos ROCHA-ALVAREZ, Kaushik Comandoor ALAYAVALLI, Jay D. PINSON, II, Rick KUSTRA, Badri N. RAMAMURTHI, Anup Kumar SINGH, Ganesh BALASUBRAMANIAN, Bhaskar KUMAR, Vinayak Vishwanath HASSAN, Canfeng LAI, Kallol BERA, Sathya Swaroop GANTA
  • Publication number: 20220044927
    Abstract: Examples of the present technology include semiconductor processing methods to form boron-containing materials on substrates. Exemplary processing methods may include delivering a deposition precursor that includes a boron-containing precursor to a processing region of a semiconductor processing chamber. A plasma may be formed from the deposition precursor within the processing region of the semiconductor processing chamber. The methods may further include depositing a boron-containing material on a substrate disposed within the processing region of the semiconductor processing chamber, where the substrate is characterized by a temperature of less than or about 50° C. The as-deposited boron-containing material may be characterized by a surface roughness of less than or about 2 nm, and a stress level of less-than or about ?500 MPa. In some embodiments, a layer of the boron-containing material may function as a hardmask.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Rick Kustra, Bo Qi, Abhijit Basu Mallick, Kaushik Alayavalli, Jay D. Pinson
  • Publication number: 20220044926
    Abstract: Examples of the present technology include semiconductor processing methods that provide a substrate in a substrate processing region of a substrate processing chamber, where the substrate is maintained at a temperature less than or about 50° C. An inert precursor and a hydrocarbon-containing precursor may be flowed into the substrate processing region of the substrate processing chamber, where a flow rate ratio of the inert precursor to the hydrocarbon-containing precursor may be greater than or about 10:1. A plasma may be generated from the inert precursor and the hydrocarbon-containing precursor, and a carbon-containing material may be deposited from the plasma on the substrate. The carbon-containing material may include diamond-like-carbon, and may have greater than or about 60% of the carbon atoms with sp3 hybridized bonds.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Rick Kustra, Bo Qi, Abhijit Basu Mallick, Kaushik Alayavalli, Jay D. Pinson
  • Publication number: 20210384015
    Abstract: Embodiments of the present disclosure generally relate to clean methods for processing chambers, and more specifically relate to plasma clean methods for removing carbon films from surfaces within the processing chamber. A method for cleaning includes introducing a cleaning gas into a processing region within a processing chamber, where interior surfaces of the processing chamber have a coating containing amorphous carbon. The cleaning gas contains oxygen gas and a noble gas. The method also includes generating an ion coupled plasma (ICP) from the cleaning gas within an upper portion of the processing region and generating a bias across a substrate support in a lower portion of the processing region. The method further includes exposing the amorphous carbon to atomic oxygen ions produced from the oxygen gas and the ICP and removing the amorphous carbon from the interior surfaces with the atomic oxygen ions during a cleaning process.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Huiyuan WANG, Rick KUSTRA, Kaushik ALAYAVALLI, Eswaranand VENKATASUBRAMANIAN, Jay D. PINSON, II, Abhijit B. MALLICK