Patents by Inventor Rick L. Wise

Rick L. Wise has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210225711
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 22, 2021
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Patent number: 10978353
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: April 13, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Publication number: 20190103321
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Patent number: 10163725
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: December 25, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Patent number: 10026815
    Abstract: An integrated circuit containing a bipolar transistor including an emitter diffused region with a peak doping density higher than 1·1020 atoms/cm3, and an emitter-base junction less than 40 nanometers deep in a base layer. A process of forming the bipolar transistor, which includes forming an emitter dopant atom layer between a base layer and an emitter layer, followed by a flash or laser anneal step to diffuse dopant atoms from the emitter dopant atom layer into the base layer.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: July 17, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rick L. Wise, Hiroshi Yasuda
  • Patent number: 9929714
    Abstract: The dominant frequency of a solidly mounted resonator (100/280/300/400) is substantially increased by reducing the thickness of each layer of each Bragg acoustic reflector (112/160/224/274) to have a thickness than is substantially equal to one-quarter of the wavelength of a frequency that is a higher harmonic resonant frequency of the fundamental resonant frequency of the solidly mounted resonator (100/280/300/400).
    Type: Grant
    Filed: April 13, 2014
    Date of Patent: March 27, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Stuart M. Jacobsen, Rick L. Wise, Maria Wang, Ricky Alan Jackson, Nicholas S. Dellas, Django Earl Trombley
  • Patent number: 9805986
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 31, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Publication number: 20170033018
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Application
    Filed: October 13, 2016
    Publication date: February 2, 2017
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Patent number: 9496262
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 15, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Publication number: 20160225673
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Application
    Filed: March 24, 2016
    Publication date: August 4, 2016
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Patent number: 9396948
    Abstract: An integrated silicon and III-N semiconductor device may be formed by growing III-N semiconductor material on a first silicon substrate having a first orientation. A second silicon substrate with a second, different, orientation has a release layer between a silicon device film and a carrier wafer. The silicon device film is attached to the III-N semiconductor material while the silicon device film is connected to the carrier wafer through the release layer. The carrier wafer is subsequently removed from the silicon device film. A first plurality of components is formed in and/or on the silicon device film. A second plurality of components is formed in and/or on III-N semiconductor material in the exposed region. In an alternate process, a dielectric interlayer may be disposed between the silicon device film and the III-N semiconductor material in the integrated silicon and III-N semiconductor device.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: July 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naveen Tipirneni, Sameer Pendharkar, Rick L. Wise
  • Publication number: 20160204198
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Application
    Filed: March 24, 2016
    Publication date: July 14, 2016
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Patent number: 9324717
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 26, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Publication number: 20150295556
    Abstract: The dominant frequency of a solidly mounted resonator (100/280/300/400) is substantially increased by reducing the thickness of each layer of each Bragg acoustic reflector (112/160/224/274) to have a thickness than is substantially equal to one-quarter of the wavelength of a frequency that is a higher harmonic resonant frequency of the fundamental resonant frequency of the solidly mounted resonator (100/280/300/400).
    Type: Application
    Filed: April 13, 2014
    Publication date: October 15, 2015
    Applicant: Texas Instrument Incorporated
    Inventors: Stuart M. Jacobsen, Rick L. Wise, Maria Wang, Ricky Alan Jackson, Nicholas S. Dellas, Django Earl Trombley
  • Publication number: 20150243494
    Abstract: A method of forming an epitaxial article includes growing a crystal of elemental silicon having a minimum boron doping level of 3.2×1018/cm3 using Czochralski process parameters including a crystal growth velocity (pull speed) [V] which is less than (<) an average axial temperature gradient [G]. The crystal is cut into at least one elemental silicon substrate having a surface aligned to a <111> direction; wherein a ratio of vacancies/interstitials in the silicon substrate is less than (<) 1. At least one epitaxial buffer layer is grown on the surface of the silicon substrate, and at least one epitaxial Group IIIA-N layer is grown on the buffer layer(s).
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: MICHAEL LOUIS HAYDEN, THOMAS ANTHONY MCKENNA, RICK L. WISE, SAMEER PENDHARKAR
  • Publication number: 20150187770
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 2, 2015
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Publication number: 20150187597
    Abstract: By controlling the concentration and size of bulk micro defects (BMD) during the manufacture of an integrated circuit slip and associated yield loss due to slip may be eliminated. A process for eliminating slip that is customized to an integrated circuit (IC) manufacturing flow is disclosed. The process is adapted to the oxygen content of the starting material and to the thermal budget of an IC manufacturing flow and generates a sufficient concentration of BMDs of a size that is optimized to getter microcracks thereby eliminating slip. Slip is eliminated in unpatterned wafers and in wafers containing shallow trench isolation and deep trench isolation using a BMD nucleation anneal and a BMD growth anneal.
    Type: Application
    Filed: December 19, 2014
    Publication date: July 2, 2015
    Inventors: Bradley David SUCHER, Rick L. WISE
  • Publication number: 20150187773
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 2, 2015
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Patent number: 9053966
    Abstract: An integrated circuit device that includes a plurality of multiple gate FinFETs (MuGFETs) is disclosed. Fins of different crystal orientations for PMOS and NMOS MuGFETs are formed through amorphization and crystal regrowth on a direct silicon bonded (DSB) hybrid orientation technology (HOT) substrate. PMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (110) crystal orientations. NMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (100) crystal orienations in a Manhattan layout with the sidewall channels of the different PMOS and NMOS MuGFETs aligned at 0° or 90° rotations.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: June 9, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Weize W. Xiong, Cloves R. Cleavelin, Angelo Pinto, Rick L. Wise
  • Publication number: 20150118861
    Abstract: A method of semiconductor fabrication includes providing an unpatterned lightly doped Czochralski bulk silicon substrate (LDCBS substrate) having a concentration of oxygen atoms of at least (?) 1017 atoms/cm3 with a boron doping or n-type doping concentration of between 1×1012 cm?3 and 5×1014 cm?3. Before any oxidization processing, the LDCBS substrate is annealed at a nucleating temperature between 550° C. and 760° C. for a nucleating time that nucleates the oxygen atoms in a sub-surface region of the LDCBS substrate to form oxygen precipitates therefrom. After the annealing, a surface of the LDCBS substrate or an epitaxial layer on the surface of the LDCBS substrate is initially oxidized in an oxidizing ambient at a peak temperature of between 800° C. and 925° C. for a time less than or equal (?) to 30 minutes.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventors: BRADLEY DAVID SUCHER, RICK L. WISE, SCOTT GERARD BALSTER, SEUNG-SA PARK, PHILIP LELAND HOWER, JOHN LIN, GURU MATHUR, YONGXI ZHANG