Patents by Inventor Rick Reimlinger

Rick Reimlinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250075909
    Abstract: An electrically controlled valve which can be operated using a programable controller. A cooperating pair of the electrically controlled valves can be used in a Regenerative Thermal Oxidizer (RTO). The electrically controlled valve has two seats, and a blade which can move between a first position contacting the first seat and a second position contacting the second seat. The blade is moved by an actuator which is controlled by a variable frequency drive (VFD). A control computer continuously monitors the operation of both valves and halts operation of the system upon detecting a fault (error). The motion of the blade is programmed such that force of impact on the seat is reduced. Once the blade is seated, a brake is engaged which maintains the stationary position while utilizing relatively low power.
    Type: Application
    Filed: May 23, 2024
    Publication date: March 6, 2025
    Applicant: Nestec, Inc.
    Inventors: Jim Nester, Rick Reimlinger, Jack Clark, Frank DeSantis
  • Publication number: 20240369221
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Application
    Filed: March 18, 2024
    Publication date: November 7, 2024
    Inventors: James L. Nester, Rick Reimlinger
  • Patent number: 12018836
    Abstract: An electrically controlled valve which can be operated using a programable controller. A cooperating pair of the electrically controlled valves can be used in a Regenerative Thermal Oxidizer (RTO). The electrically controlled valve has two seats, and a blade which can move between a first position contacting the first seat and a second position contacting the second seat. The blade is moved by an actuator which is controlled by a variable frequency drive (VFD). A control computer continuously monitors the operation of both valves and halts operation of the system upon detecting a fault (error). The motion of the blade is programmed such that force of impact on the seat is reduced. Once the blade is seated, a brake is engaged which maintains the stationary position while utilizing relatively low power.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: June 25, 2024
    Assignee: Nestec, Inc.
    Inventors: Jim Nester, Rick Reimlinger, Jack Clark, Frank DeSantis
  • Patent number: 11933495
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: March 19, 2024
    Inventors: James L. Nester, Rick Reimlinger
  • Publication number: 20230272908
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 31, 2023
    Inventors: James L. Nester, Rick Reimlinger
  • Publication number: 20220397270
    Abstract: A regenerative thermal oxidizer (RTO) with three or more chambers. Each chamber would be in a unique mode, (inlet, outlet, purge). Each chamber has its gas flow determined by two poppet valves which define which mode the chamber will be in: inlet mode, output mode, or purge mode.
    Type: Application
    Filed: May 13, 2021
    Publication date: December 15, 2022
    Applicant: Nestec, Inc.
    Inventors: Jim Nester, Rick Reimlinger
  • Publication number: 20220364724
    Abstract: A regenerative thermal oxidizer (RTO) with three or more chambers. Each chamber would be in a unique mode, (inlet, outlet, purge). Each chamber has its gas flow determined by two poppet valves which define which mode the chamber will be in: inlet mode, output mode, or purge mode.
    Type: Application
    Filed: May 30, 2021
    Publication date: November 17, 2022
    Applicant: Nestec, Inc.
    Inventors: Jim Nester, Rick Reimlinger
  • Publication number: 20220186926
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Application
    Filed: March 1, 2022
    Publication date: June 16, 2022
    Inventors: James L. Nester, Rick Reimlinger
  • Patent number: 11262068
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: March 1, 2022
    Inventors: James L. Nester, Rick Reimlinger
  • Publication number: 20210071866
    Abstract: An electrically controlled valve which can be operated using a programable controller. A cooperating pair of the electrically controlled valves can be used in a Regenerative Thermal Oxidizer (RTO). The electrically controlled valve has two seats, and a blade which can move between a first position contacting the first seat and a second position contacting the second seat. The blade is moved by an actuator which is controlled by a variable frequency drive (VFD). A control computer continuously monitors the operation of both valves and halts operation of the system upon detecting a fault (error). The motion of the blade is programmed such that force of impact on the seat is reduced. Once the blade is seated, a brake is engaged which maintains the stationary position while utilizing relatively low power.
    Type: Application
    Filed: June 17, 2020
    Publication date: March 11, 2021
    Applicant: Nestec, Inc.
    Inventors: Jim Nester, Rick Reimlinger, Jack Clark, Frank DeSantis
  • Publication number: 20200173655
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Application
    Filed: October 7, 2019
    Publication date: June 4, 2020
    Inventors: James L. Nester, Rick Reimlinger
  • Patent number: 10436441
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: October 8, 2019
    Inventors: James L Nester, Rick Reimlinger
  • Publication number: 20170234532
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Application
    Filed: November 7, 2016
    Publication date: August 17, 2017
    Inventors: James L. Nester, Rick Reimlinger
  • Patent number: 9488372
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 8, 2016
    Inventors: James L Nester, Rick Reimlinger
  • Publication number: 20140272729
    Abstract: The present device is a fluid bed regenerative thermal oxidizer configured to minimize dead spaces within it and eliminate the need for complex valve systems, which are typically required to move treated and untreated air across fixed beds. The present device can be a fluid bed regenerative thermal oxidizer comprising a vertical stack having a combustion chamber near its interior center and desorber shelves located within the vertical stack above the combustion chamber and adsorber shelves located within the vertical stack below the combustion shelves. Ceramic spheres can be used as heat sinks that flow from the desorber shelves, around the combustion chamber and onto the adsorber shelves and then back to the desorber shelves. In this way heat from the combustion can be captured by the heat exchange material on the desorber shelves and released to preheat untreated air on the adsorber shelves.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: James L. Nester, Rick Reimlinger