Patents by Inventor Rick Slater

Rick Slater has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6618133
    Abstract: An improved, low-cost optical transmitter and method useful in a three-dimensional measurement system wherein a plurality of operational parameters of said transmitter are calibrated during manufacture/assembly process to generate unique calibration data for each optical transmitter including data defining angles of each transmitter's first and second radiant fan beams and the angle between the beams when the transmitter is leveled for operation in the system and wherein a detector/receiver in the system distinguishes between radiant beams from a plurality of individual transmitters operable within a given measurement field as a function of the selectively alterable rotational velocity calibration data for each of said transmitters and wherein said angular calibration data for each transmitter is operationally available to each detector/receiver operable in the system.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: September 9, 2003
    Assignee: Arc Second, Inc.
    Inventors: Thomas M. Hedges, Scott Casteel, Thomas Cuff, Timothy Pratt, Rick Slater, Donald Todd
  • Patent number: 6545751
    Abstract: An improved low cost theodolite position measurement system and process which is particularly useful in enabling a single operator to conveniently set up the system and calculate elevation (el) and azimuth (az) angle data. Only a single optical transmitter is positioned within a predetermined workspace thus significantly decreasing equipment costs and setup time. The single transmitter is positioned and leveled at a predetermined point in the workspace. In operation the single rotatably mounted transmitter head illuminates the workspace volume with a pair of spaced apart precalibrated fan beams which sweep the space and a periodically emitted reference strobe pulse. At least one optical receiver is selectively positionable within said workspace so that during each revolution of said single transmitter head said receiver receives a first position strike and a second position strike of said fan beams.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: April 8, 2003
    Assignee: Arc Second, Inc.
    Inventors: Sean Beliveau, Edward R. Barrientos, Yvan Beliveau, Thomas M. Hedges, Eric J. Lundberg, Edmund S. Pendleton, Timothy Pratt, Rick Slater, Michael J. Sobel
  • Patent number: 6519029
    Abstract: An improved, low-cost optical transmitter and method useful in a three-dimensional measurement system wherein a plurality of operational parameters of said transmitter are calibrated during manufacture/assembly process to generate unique calibration data for each optical transmitter including data defining angles of each transmitter's first and second radiant fan beams and the angle between the beams when the transmitter is leveled for operation in the system and wherein a detector/receiver in the system distinguishes between radiant beams from a plurality of individual transmitters operable within a given measurement field as a function of the selectively alterable rotational velocity calibration data for each of said transmitters and wherein said angular calibration data for each transmitter is operationally available to each detector/receiver operable in the system.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: February 11, 2003
    Assignee: Arc Second, Inc.
    Inventors: Thomas M. Hedges, Scott Casteel, Thomas Cuff, Timothy Pratt, Rick Slater, Donald Todd
  • Publication number: 20030025902
    Abstract: An improved, low-cost optical transmitter and method useful in a three-dimensional measurement system wherein a plurality of operational parameters of said transmitter are calibrated during manufacture/assembly process to generate unique calibration data for each optical transmitter including data defining angles of each transmitter's first and second radiant fan beams and the angle between the beams when the transmitter is leveled for operation in the system and wherein a detector/receiver in the system distinguishes between radiant beams from a plurality of individual transmitters operable within a given measurement field as a function of the selectively alterable rotational velocity calibration data for each of said transmitters and wherein said angular calibration data for each transmitter is operationally available to each detector/receiver operable in the system.
    Type: Application
    Filed: July 26, 2002
    Publication date: February 6, 2003
    Inventors: Thomas M. Hedges, Scott Casteel, Thomas Cuff, Timothy Pratt, Rick Slater, Donald Todd
  • Patent number: 6501543
    Abstract: An improved receiver for use in a robotic theodolite spatial positioning apparatus that allows a single user to determine elevation and azimuth angle data. To determine elevation angle of the receiver, the receiver has a sensor that receives a first position signal and a second position signal emitted from an optical transmitter. The receiver outputs a first and a second receive signal. A calculator in the receiver determines the first interval time separation between the first and second receive signals, converts the first time interval separation into elevation angle data and outputs the elevation angle data. A display in the receiver receives and displays the elevation angle data. The receiver is selectively positionable within a workspace.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: December 31, 2002
    Assignee: Arc Second, Inc.
    Inventors: Tom M. Hedges, Sean Beliveau, Timothy Pratt, Rick Slater, Michael J. Sobel
  • Publication number: 20020033940
    Abstract: An improved receiver for use in a robotic theodolite spatial positioning apparatus that allows a single user to determine elevation and azimuth angle data. To determine elevation angle of the receiver, the receiver has a sensor that receives a first position signal and a second position signal emitted from an optical transmitter. The receiver outputs a first and a second receive signal. A calculator in the receiver determines the first interval time separation between the first and second receive signals, converts the first time interval separation into elevation angle data and outputs the elevation angle data. A display in the receiver receives and displays the elevation angle data. The receiver is selectively positionable within a workspace.
    Type: Application
    Filed: February 26, 2001
    Publication date: March 21, 2002
    Inventors: Tom M. Hedges, Sean Beliveau, Timothy Pratt, Rick Slater, Michael J. Sobel
  • Publication number: 20020008870
    Abstract: An improved low cost theodolite position measurement system and process which is particularly useful in enabling a single operator to conveniently set up the system and calculate elevation (el) and azimuth (az) angle data. Only a single optical transmitter is positioned within a predetermined workspace thus significantly decreasing equipment costs and setup time. The single transmitter is positioned and leveled at a predetermined point in the workspace. In operation the single rotatably mounted transmitter head illuminates the workspace volume with a pair of spaced apart precalibrated fan beams which sweep the space and a periodically emitted reference strobe pulse. At least one optical receiver is selectively positionable within said workspace so that during each revolution of said single transmitter head said receiver receives a first position strike and a second position strike of said fan beams.
    Type: Application
    Filed: February 26, 2001
    Publication date: January 24, 2002
    Inventors: Sean Beliveau, Edward R. Barrientos, Yvan Beliveau, Thomas M. Hedges, Eric J. Lundberg, Edmund S. Pendleton, Timothy Pratt, Rick Slater, Michael J. Sobel