Patents by Inventor Rie Yokoi

Rie Yokoi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10998141
    Abstract: A mixture of amorphous PAHs and at least one of a carrier ion storage metal, a Sn compound, a carrier ion storage alloy, a metal compound, Si, Sb, and SiO2 is used as the negative electrode active material. The theoretical capacity of amorphous PAHs greatly exceeds that of a graphite based carbon material. Thus, the use of amorphous PAHs enables the negative electrode active material to have a higher capacity than in the case of using the graphite-based carbon material. Further, addition of at least one of the carrier ion storage metal, the Sn compound, the carrier ion storage alloy, the metal compound, Si, Sb, and SiO2 to the amorphous PAHs enables the negative electrode active material to have a higher capacity than the case of only using the amorphous PAHs.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: May 4, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yumiko Saito, Rie Yokoi, Mayumi Mikami
  • Patent number: 10991984
    Abstract: A nonaqueous electrolyte of the present invention includes an ionic liquid including a first alicyclic quaternary ammonium cation having one or more substituents, a second alicyclic quaternary ammonium cation having an alicyclic skeleton that is the same as an alicyclic skeleton of the first alicyclic quaternary ammonium cation, and a counter anion to the first alicyclic quaternary ammonium cation and the second alicyclic quaternary ammonium cation and an alkali metal salt. In the second alicyclic quaternary ammonium cation, one of substituents bonded to a nitrogen atom in the alicyclic skeleton is a substituent including a halogen element. In the ionic liquid, the amount of a salt including the second alicyclic quaternary ammonium cation is less than or equal to 1 wt % per unit weight of the ionic liquid, or is less than or equal to 0.8 wt % per unit weight of the nonaqueous electrolyte.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: April 27, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Itakura, Kyosuke Ito, Rie Yokoi, Jun Ishikawa
  • Publication number: 20200234893
    Abstract: A mixture of amorphous PAHs and at least one of a carrier ion storage metal, a Sn compound, a carrier ion storage alloy, a metal compound, Si, Sb, and SiO2 is used as the negative electrode active material. The theoretical capacity of amorphous PAHs greatly exceeds that of a graphite based carbon material. Thus, the use of amorphous PAHs enables the negative electrode active material to have a higher capacity than in the case of using the graphite-based carbon material. Further, addition of at least one of the carrier ion storage metal, the Sn compound, the carrier ion storage alloy, the metal compound, Si, Sb, and SiO2 to the amorphous PAHs enables the negative electrode active material to have a higher capacity than the case of only using the amorphous PAHs.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 23, 2020
    Inventors: Yumiko SAITO, Rie YOKOI, Mayumi MIKAMI
  • Patent number: 10614967
    Abstract: A mixture of amorphous PAHs and at least one of a carrier ion storage metal, a Sn compound, a carrier ion storage alloy, a metal compound, Si, Sb, and SiO2 is used as the negative electrode active material. The theoretical capacity of amorphous PAHs greatly exceeds that of a graphite-based carbon material. Thus, the use of amorphous PAHs enables the negative electrode active material to have a higher capacity than in the case of using the graphite-based carbon material. Further, addition of at least one of the carrier ion storage metal, the Sn compound, the carrier ion storage alloy, the metal compound, Si, Sb, and SiO2 to the amorphous PAHs enables the negative electrode active material to have a higher capacity than the case of only using the amorphous PAHs.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: April 7, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yumiko Saito, Rie Yokoi, Mayumi Mikami
  • Patent number: 10147556
    Abstract: A power storage device with high capacity, a power storage device with high energy density, a highly reliable power storage device, and a long-life power storage device are provided. The power storage device includes a positive electrode, a separator, a negative electrode, and an electrolytic solution. The electrolytic solution contains an alkali metal salt and an ionic liquid. The separator is located between the positive electrode and the negative electrode. At least part of the positive electrode overlaps with the negative electrode. At least part of an end portion of the negative electrode is located inside a region between end portions of the positive electrode.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: December 4, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Aya Uchida, Teppei Oguni, Rie Yokoi, Jun Ishikawa
  • Patent number: 10128541
    Abstract: A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm?1 and a Raman shift of 1580 cm?1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: November 13, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Itakura, Kyosuke Ito, Jun Ishikawa, Rie Yokoi
  • Patent number: 10049825
    Abstract: To provide an ionic liquid which has at least one of properties such as high ionic conductivity, a small reduction in ionic conductivity at a low temperature, a low melting point, and a low viscosity. To provide a power storage device having higher initial charge and discharge efficiency than a power storage device containing a conventional ionic liquid. A cyclic quaternary ammonium salt is liquid at room temperature and contains a quaternary spiro ammonium cation having an asymmetrical structure including two aliphatic rings and one or more substituents bonded to one or both of the two aliphatic rings and an anion corresponding to the quaternary spiro ammonium cation. The power storage device includes a positive electrode, a negative electrode, and a nonaqueous electrolyte containing the cyclic quaternary ammonium salt as a nonaqueous solvent.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: August 14, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kyosuke Ito, Toru Itakura, Rie Yokoi, Jun Ishikawa
  • Publication number: 20180048027
    Abstract: A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm?1 and a Raman shift of 1580 cm?1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
    Type: Application
    Filed: October 25, 2017
    Publication date: February 15, 2018
    Inventors: Toru ITAKURA, Kyosuke ITO, Jun ISHIKAWA, Rie YOKOI
  • Patent number: 9847555
    Abstract: A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm?1 and a Raman shift of 1580 cm?1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: December 19, 2017
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Toru Itakura, Kyosuke Ito, Jun Ishikawa, Rie Yokoi
  • Publication number: 20170207487
    Abstract: A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution, in the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %, The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm?1 and a Raman shift of 1580 cm?1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Inventors: Toru ITAKURA, Kyosuke ITO, Jun ISHIKAWA, Rie YOKOI
  • Patent number: 9620820
    Abstract: A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm?1 and a Raman shift of 1580 cm?1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: April 11, 2017
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Toru Itakura, Kyosuke Ito, Jun Ishikawa, Rie Yokoi
  • Publication number: 20160276710
    Abstract: A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm?1 and a Raman shift of 1580 cm?1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Inventors: Toru ITAKURA, Kyosuke ITO, Jun ISHIKAWA, Rie YOKOI
  • Patent number: 9362564
    Abstract: A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm?1 and a Raman shift of 1580 cm?1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: June 7, 2016
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Toru Itakura, Kyosuke Ito, Jun Ishikawa, Rie Yokoi
  • Publication number: 20160141719
    Abstract: A nonaqueous electrolyte of the present invention includes an ionic liquid including a first alicyclic quaternary ammonium cation having one or more substituents, a second alicyclic quaternary ammonium cation having an alicyclic skeleton that is the same as an alicyclic skeleton of the first alicyclic quaternary ammonium cation, and a counter anion to the first alicyclic quaternary ammonium cation and the second alicyclic quaternary ammonium cation and an alkali metal salt. In the second alicyclic quaternary ammonium cation, one of substituents bonded to a nitrogen atom in the alicyclic skeleton is a substituent including a halogen element. In the ionic liquid, the amount of a salt including the second alicyclic quaternary ammonium cation is less than or equal to 1 wt % per unit weight of the ionic liquid, or is less than or equal to 0.8 wt % per unit weight of the nonaqueous electrolyte.
    Type: Application
    Filed: January 28, 2016
    Publication date: May 19, 2016
    Inventors: Toru ITAKURA, Kyosuke ITO, Rie YOKOI (Former MATSUBARA), Jun ISHIKAWA
  • Publication number: 20160064154
    Abstract: A mixture of amorphous PAHs and at least one of a carrier ion storage metal, a Sn compound, a carrier ion storage alloy, a metal compound, Si, Sb, and SiO2 is used as the negative electrode active material. The theoretical capacity of amorphous PAHs greatly exceeds that of a graphite-based carbon material. Thus, the use of amorphous PAHs enables the negative electrode active material to have a higher capacity than in the case of using the graphite-based carbon material. Further, addition of at least one of the carrier ion storage metal, the Sn compound, the carrier ion storage alloy, the metal compound, Si, Sb, and SiO2 to the amorphous PAHs enables the negative electrode active material to have a higher capacity than the case of only using the amorphous PAHs.
    Type: Application
    Filed: November 11, 2015
    Publication date: March 3, 2016
    Inventors: Yumiko SAITO, Rie YOKOI, Mayumi MIKAMI
  • Patent number: 9252459
    Abstract: A nonaqueous electrolyte of the present invention includes an ionic liquid including a first alicyclic quaternary ammonium cation having one or more substituents, a second alicyclic quaternary ammonium cation having an alicyclic skeleton that is the same as an alicyclic skeleton of the first alicyclic quaternary ammonium cation, and a counter anion to the first alicyclic quaternary ammonium cation and the second alicyclic quaternary ammonium cation and an alkali metal salt. In the second alicyclic quaternary ammonium cation, one of substituents bonded to a nitrogen atom in the alicyclic skeleton is a substituent including a halogen element. In the ionic liquid, the amount of a salt including the second alicyclic quaternary ammonium cation is less than or equal to 1 wt % per unit weight of the ionic liquid, or is less than or equal to 0.8 wt % per unit weight of the nonaqueous electrolyte.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: February 2, 2016
    Assignee: Semiconductor Energy Co., Ltd.
    Inventors: Toru Itakura, Kyosuke Ito, Rie Yokoi, Jun Ishikawa
  • Publication number: 20150279577
    Abstract: A power storage device with high capacity, a power storage device with high energy density, a highly reliable power storage device, and a long-life power storage device are provided. The power storage device includes a positive electrode, a separator, a negative electrode, and an electrolytic solution. The electrolytic solution contains an alkali metal salt and an ionic liquid. The separator is located between the positive electrode and the negative electrode. At least part of the positive electrode overlaps with the negative electrode. At least part of an end portion of the negative electrode is located inside a region between end portions of the positive electrode.
    Type: Application
    Filed: March 17, 2015
    Publication date: October 1, 2015
    Inventors: Aya UCHIDA, Teppei OGUNI, Rie YOKOI, Jun ISHIKAWA
  • Publication number: 20150140449
    Abstract: Provided are a nonaqueous solvent containing a compound with high conductivity and low viscosity and a high-performance power storage device using the nonaqueous solvent. The power storage device includes an ionic liquid. The ionic liquid contains an anion and a cation having a five-membered heteroaromatic ring having one or more substituents. At least one of the substituents is a straight chain formed of four or more atoms and includes one or more of C, O, Si, N, S, and P.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 21, 2015
    Inventors: Jun ISHIKAWA, Satoshi SEO, Rie YOKOI, Hiroshi KADOMA, Tomoya HIROSE
  • Publication number: 20150086860
    Abstract: A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode, a negative electrode, and an electrolyte solution. The negative electrode includes a negative electrode active material and a water-soluble polymer. The electrolyte solution includes an ionic liquid. The ionic liquid includes a cation and a monovalent amide anion.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 26, 2015
    Inventors: Rie YOKOI, Jun ISHIKAWA, Teppei OGUNI, Kai KIMURA, Satoshi SEO, Tamae MORIWAKA
  • Publication number: 20140377644
    Abstract: A nonaqueous solvent that includes an ionic liquid and has at least one of the following characteristics: high lithium ion conductivity, high lithium ion conductivity in a low temperature environment, high heat resistance, a wide available temperature range, a low freezing point (melting point), low viscosity, and the like. The nonaqueous solvent includes an ionic liquid and a fluorinated solvent. The ionic liquid contains an alicyclic quaternary ammonium cation which has a substituent and a counter anion to the alicyclic quaternary ammonium cation which has the substituent.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 25, 2014
    Inventors: Jun ISHIKAWA, I, Rie YOKOI, Satoshi SEO, Toru ITAKURA, Sachiko KAWAKAMI, Kaori OGITA