Patents by Inventor Rihito Kaneko

Rihito Kaneko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965473
    Abstract: An internal combustion engine includes a port injection valve, a direct injection valve, and a forced-induction device. A ratio of an amount of fuel injected from the port injection valve with respect to a total amount of fuel supplied for one fuel combustion in the cylinder is defined as a port injection ratio. The internal combustion engine is controlled such that, in a case in which a condition is satisfied that the forced-induction device is in an operation of performing forced induction and the internal combustion engine is in an engine operation region in which a valve overlap period is greater than zero, the port injection ratio is set to be small and a start timing of fuel injection from the port injection valve is delayed as compared with a case in which the condition is not satisfied.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: April 23, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masanao Idogawa, Rihito Kaneko, Motohiro Sugimoto, Takahiro Uchida
  • Patent number: 11885274
    Abstract: Control circuitry executes an increase correction control for fuel when an internal combustion engine is started. A determination process determines whether warm-up in a cylinder is completed. A direct injection mode injects fuel only from a direct injection valve when it is determined that the warm-up in the cylinder is completed. A reduction process sets an increase correction amount of fuel obtained through the increase correction control when executing the direct injection mode to be less than an increase correction amount obtained prior to the execution of the direct injection mode.
    Type: Grant
    Filed: February 7, 2023
    Date of Patent: January 30, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shoichi Akiyama, Noboru Takagi, Rihito Kaneko, Hirokazu Tanaka
  • Publication number: 20230287844
    Abstract: An internal combustion engine includes a port injection valve, a direct injection valve, and a forced-induction device. A ratio of an amount of fuel injected from the port injection valve with respect to a total amount of fuel supplied for one fuel combustion in the cylinder is defined as a port injection ratio. The internal combustion engine is controlled such that, in a case in which a condition is satisfied that the forced-induction device is in an operation of performing forced induction and the internal combustion engine is in an engine operation region in which a valve overlap period is greater than zero, the port injection ratio is set to be small and a start timing of fuel injection from the port injection valve is delayed as compared with a case in which the condition is not satisfied.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 14, 2023
    Inventors: Masanao IDOGAWA, Rihito KANEKO, Motohiro SUGIMOTO, Takahiro UCHIDA
  • Publication number: 20230250773
    Abstract: Control circuitry executes an increase correction control for fuel when an internal combustion engine is started. A determination process determines whether warm-up in a cylinder is completed. A direct injection mode injects fuel only from a direct injection valve when it is determined that the warm-up in the cylinder is completed. A reduction process sets an increase correction amount of fuel obtained through the increase correction control when executing the direct injection mode to be less than an increase correction amount obtained prior to the execution of the direct injection mode.
    Type: Application
    Filed: February 7, 2023
    Publication date: August 10, 2023
    Inventors: Shoichi AKIYAMA, Noboru TAKAGI, Rihito KANEKO, Hirokazu TANAKA
  • Patent number: 11199124
    Abstract: A cooling apparatus for an internal combustion engine includes a pump, a radiator, a flow rate adjustment valve, a bypass passage, and a controller. The flow rate adjustment valve includes a valve member that rotates to change an open degree of the flow rate adjustment valve and a valve member biasing component that biases the valve member in a valve-closing direction in which the open degree decreases. The valve member rotates in a valve-opening direction in which the open degree increases when a pressure difference increases between positions upstream and downstream of the valve member in a flow direction of coolant in the circulation circuit and rotate in the valve-closing direction when the pressure difference decreases. The controller increases the pump discharge amount as a target radiator flow rate that is a target of an amount of coolant passing through the radiator increases.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: December 14, 2021
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Noboru Takagi, Hirokazu Kato, Rihito Kaneko, Naoto Hisaminato, Hirokazu Ando, Masaaki Yamaguchi, Hirotaka Watanabe, Masahiro Yoshida, Koji Nunami, Naoto Yumisashi, Masafumi Yoshida, Takahiko Aoyagi
  • Patent number: 11149705
    Abstract: An engine controller includes an ignition timing control unit and a rich imbalance determining unit. The rich imbalance determining unit designates one of multiple cylinders as a subject cylinder for determination and executes lean active control that commands a smaller amount of fuel injection for the subject cylinder than for the other cylinders. The rich imbalance determining unit determines whether an air-fuel ratio of the subject cylinder deviates to be richer based on a rotational fluctuation amount of a crankshaft during the execution of the lean active control. The ignition timing control unit executes an advancement limiting process that limits advancement of the ignition timing by the knock control during the execution of the lean active control.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: October 19, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihito Hanai, Takayuki Hosogi, Kenji Senda, Rihito Kaneko, Masaaki Yamaguchi
  • Patent number: 11143327
    Abstract: A cooling apparatus includes a circulation circuit, a pump, a flow rate adjustment valve, and a controller. The flow rate adjustment valve includes a valve member that rotates to change an open degree of the flow rate adjustment valve and a stopper that moves between a restriction position and a retraction position. The controller is configured to execute, when maintaining the open degree of the flow rate adjustment, a preparatory process of moving the stopper to the restriction position after arranging the stopper at the retraction position and arranging the valve member further in the valve-closing direction than the stopper through control of the pump discharge amount.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 12, 2021
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Noboru Takagi, Hirokazu Kato, Rihito Kaneko, Naoto Hisaminato, Hirokazu Ando, Masaaki Yamaguchi, Hirotaka Watanabe, Takahiko Aoyagi, Masahiro Yoshida, Koji Nunami, Naoto Yumisashi, Masafumi Yoshida
  • Patent number: 10961898
    Abstract: A cooling device includes an inner passage, an outer passage, an engine-driven pump, an electromagnetic control valve, and a driving circuit that regulates current flowing through the electromagnetic control valve by activating and deactivating a switching element. A cooling controller for the cooling device includes a processing circuit configured to execute an operation process for operating, when the engine-driven pump is driven, the switching element by setting a duty cycle of an activation time to a switching cycle, which is a reciprocal of a switching frequency of the switching element, to be a larger value when a temperature of the internal combustion engine is low than when the temperature is high and a cycle varying process for setting a longer switching cycle when the temperature of the internal combustion engine is less than a preset temperature than when the temperature is greater than or equal to the preset temperature.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: March 30, 2021
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Rihito Kaneko, Noboru Takagi, Naoto Hisaminato, Mitsuru Yamaguchi, Hirokazu Ando, Masaaki Yamaguchi, Takahiko Aoyagi, Hirotaka Watanabe
  • Patent number: 10927747
    Abstract: A cooling system of an internal combustion engine includes an adjustment valve configured to adjust a flow rate of a cooling liquid discharged from a water jacket. A controller for the cooling system includes circuitry configured to execute flow-restriction control that controls the adjustment valve to restrict discharge of the cooling liquid from the water jacket, thereby increasing temperature of an engine body. The circuitry is configured to execute the flow-restriction control so that temperature of the cooling liquid in the water jacket at which the flow-restriction control is terminated is lower when an ambient pressure is low than when the ambient pressure is high.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: February 23, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rihito Kaneko, Noboru Takagi, Naoto Hisaminato, Mitsuru Yamaguchi, Hirokazu Andoh, Masaaki Yamaguchi, Yoshihiro Furuya
  • Patent number: 10927748
    Abstract: A flow passage device includes a circulation flow passage, a swing valve provided in the circulation flow passage, an energizing part, and a lock mechanism including a lock pin. The lock pin is configured so as to hinder the swing valve from opening, and to allow the swing valve to open. The swing valve is configured so as to rotate from a first valve position to a second valve position. The lock mechanism is configured so as to set a locked state and to set an unlocked state. The lock pin is configured so as to protrude as being energized by pressure of the fluid on an upstream side of the swing valve, and to retract as being energized by pressure of the fluid on a downstream side of the swing valve.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: February 23, 2021
    Assignees: AISIN SEIKI KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masafumi Yoshida, Naoto Yumisashi, Koji Nunami, Masahiro Yoshida, Hirotaka Watanabe, Takahiko Aoyagi, Noboru Takagi, Hirokazu Kato, Rihito Kaneko, Masaaki Yamaguchi
  • Publication number: 20210033059
    Abstract: An engine controller includes an ignition timing control unit and a rich imbalance determining unit. The rich imbalance determining unit designates one of multiple cylinders as a subject cylinder for determination and executes lean active control that commands a smaller amount of fuel injection for the subject cylinder than for the other cylinders. The rich imbalance determining unit determines whether an air-fuel ratio of the subject cylinder deviates to be richer based on a rotational fluctuation amount of a crankshaft during the execution of the lean active control. The ignition timing control unit executes an advancement limiting process that limits advancement of the ignition timing by the knock control during the execution of the lean active control.
    Type: Application
    Filed: June 29, 2020
    Publication date: February 4, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihito HANAI, Takayuki HOSOGI, Kenji SENDA, Rihito KANEKO, Masaaki YAMAGUCHI
  • Patent number: 10851701
    Abstract: An engine cooling system includes a coolant circulation path, which circulates coolant between the water jacket and the radiator of an internal combustion engine, a pump, a control valve, which is provided in the coolant circulation path, and a controller. The controller executes a warming-up promotion control and a pressure relaxation control. In the pressure relaxation control, the controller controls the aperture ratio of the radiator port such that the lower the temperature of the radiator, the lower becomes the engine rotational speed at which the aperture ratio of the radiator port is increased.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: December 1, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoya Kawamoto, Rihito Kaneko, Hirokazu Ando, Yusuke Niwa
  • Patent number: 10851757
    Abstract: A CPU advances ignition timing within a range in which knocking can be suppressed by feedback control based on an output signal of a knocking sensor. The CPU sets the igniting timing based on a feedback adjustment amount and a learning value. The CPU limits timing advancing update of the learning value when an exhaust pressure is higher than or equal to a threshold.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: December 1, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Hosogi, Rihito Kaneko, Kenji Senda, Norihito Hanai, Hisayuki Ito, Masaaki Yamaguchi
  • Patent number: 10808597
    Abstract: An internal combustion engine includes a water jacket, a cooling water pump as a cooling liquid pump, and an adjusting valve. A control device for the internal combustion engine executes the water stoppage control of increasing the temperature of the engine body by limiting the discharge of the cooling liquid from the water jacket by the adjusting valve, and an automatic stop and automatic startup control of automatically stopping and automatically starting the internal combustion engine. The control device increases the fuel injection amount for automatically starting the internal combustion engine in a case where the water stoppage control is being executed when the internal combustion engine is automatically stopped as compared with a case where the water stoppage control is not being executed when the internal combustion engine is automatically stopped.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: October 20, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihiro Furuya, Rihito Kaneko, Noboru Takagi, Masaaki Yamaguchi, Hirokazu Ando, Mitsuru Yamaguchi
  • Publication number: 20200157999
    Abstract: A cooling apparatus for an internal combustion engine includes a pump, a radiator, a flow rate adjustment valve, a bypass passage, and a controller. The flow rate adjustment valve includes a valve member that rotates to change an open degree of the flow rate adjustment valve and a valve member biasing component that biases the valve member in a valve-closing direction in which the open degree decreases. The valve member rotates in a valve-opening direction in which the open degree increases when a pressure difference increases between positions upstream and downstream of the valve member in a flow direction of coolant in the circulation circuit and rotate in the valve-closing direction when the pressure difference decreases. The controller increases the pump discharge amount as a target radiator flow rate that is a target of an amount of coolant passing through the radiator increases.
    Type: Application
    Filed: October 22, 2019
    Publication date: May 21, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Noboru TAKAGI, Hirokazu KATO, Rihito KANEKO, Naoto HISAMINATO, Hirokazu ANDO, Masaaki YAMAGUCHI, Hirotaka WATANABE, Masahiro YOSHIDA, Koji NUNAMI, Naoto YUMISASHI, Masafumi YOSHIDA, Takahiko AOYAGI
  • Publication number: 20200158000
    Abstract: A flow passage device includes a circulation flow passage, a swing valve provided in the circulation flow passage, an energizing part, and a lock mechanism including a lock pin. The lock pin is configured so as to hinder the swing valve from opening, and to allow the swing valve to open. The swing valve is configured so as to rotate from a first valve position to a second valve position. The lock mechanism is configured so as to set a locked state and to set an unlocked state. The lock pin is configured so as to protrude as being energized by pressure of the fluid on an upstream side of the swing valve, and to retract as being energized by pressure of the fluid on a downstream side of the swing valve.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 21, 2020
    Applicants: AISIN SEIKI KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masafumi YOSHIDA, Naoto YUMISASHI, Koji NUNAMI, Masahiro YOSHIDA, Hirotaka WATANABE, Takahiko AOYAGI, Noboru TAKAGI, Hirokazu KATO, Rihito KANEKO, Masaaki YAMAGUCHI
  • Publication number: 20200158254
    Abstract: A cooling apparatus includes a circulation circuit, a pump, a flow rate adjustment valve, and a controller. The flow rate adjustment valve includes a valve member that rotates to change an open degree of the flow rate adjustment valve and a stopper that moves between a restriction position and a retraction position. The controller is configured to execute, when maintaining the open degree of the flow rate adjustment, a preparatory process of moving the stopper to the restriction position after arranging the stopper at the retraction position and arranging the valve member further in the valve-closing direction than the stopper through control of the pump discharge amount.
    Type: Application
    Filed: October 22, 2019
    Publication date: May 21, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Noboru TAKAGI, Hirokazu KATO, Rihito KANEKO, Naoto HISAMINATO, Hirokazu ANDO, Masaaki YAMAGUCHI, Hirotaka WATANABE, Takahiko AOYAGI, Masahiro YOSHIDA, Koji NUNAMI, Naoto YUMISASHI, Masafumi YOSHIDA
  • Patent number: 10619554
    Abstract: A coolant circuit of an engine cooling apparatus includes a first passage where coolant flows through a radiator and a second passage where coolant flows without passing through the radiator. A coolant control valve controls a first passage flow rate Frad and a second passage flow rate Fsec. An outlet coolant temperature sensor detects an outlet coolant temperature Tout, which is a coolant temperature before a branching point of the first passage and the second passage. An inlet coolant temperature sensor detects an inlet coolant temperature Tin, which is a coolant temperature after a merging point of the first passage and the second passage. A coolant temperature estimator calculates a radiator coolant temperature Trad, which is a coolant temperature at a coolant exit of the radiator, when the first passage flow rate Frad is greater than or equal to a specified flow rate using equation (1).
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: April 14, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noboru Takagi, Masaaki Yamaguchi, Rihito Kaneko, Hirokazu Ando, Mitsuru Yamaguchi, Yoshihiro Furuya
  • Patent number: 10598077
    Abstract: An ECU includes a motor control unit that controls energization to a motor, and a fixation determination unit that makes a determination on fixation of a valve body. The motor drives the valve body housed in a housing of a control valve. When the fixation determination unit has determined that the valve body is fixed, the motor control unit performs fixation-time control that energizes the motor so as to drive the valve body.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: March 24, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rihito Kaneko, Noboru Takagi, Isao Takagi, Naoto Hisaminato, Mitsuru Yamaguchi, Hirokazu Ando, Hidetoshi Onoda, Hiroshi Akeyama
  • Publication number: 20200032762
    Abstract: A CPU advances ignition timing within a range in which knocking can be suppressed by feedback control based on an output signal of a knocking sensor. The CPU sets the igniting timing based on a feedback adjustment amount and a learning value. The CPU limits timing advancing update of the learning value when an exhaust pressure is higher than or equal to a threshold.
    Type: Application
    Filed: June 18, 2019
    Publication date: January 30, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki HOSOGI, Rihito KANEKO, Kenji SENDA, Norihito HANAI, Hisayuki ITO, Masaaki YAMAGUCHI