Patents by Inventor Rihui He

Rihui He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9293076
    Abstract: This disclosure provides systems, methods and apparatus for an arrangement of pixels and interconnects in a display. In one aspect, polarities of pixels may be in a dot inversion configuration, or checkerboard pattern, to reduce the visibility of flicker. Various interconnect alternatively couple between modules in different columns or rows to provide dot inversion.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: March 22, 2016
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Edward Keat Leem Chan, Bing Wen, Cheonhong Kim, Wilhelmus Johannes Robertus Van Lier, Chih-Hsiang Ho, Rihui He, Ming-Hau Tung, Alok Govil, Jae Hyeong Seo
  • Publication number: 20150132855
    Abstract: Techniques described herein enable a mobile multifunction device to detect a disposable sensor card at an interface coupled to the mobile multifunction device, wherein the disposable sensor card is mounted inside an opening in the mobile multifunction device, detect analog information associated with the disposable sensor card, and convert analog information to digital information. Detecting analog information comprises detecting a non-transient change in at least a portion of the disposable sensor card, wherein at least a portion of the first disposable sensor card changes form in response to exposure to one or more stimuli from an environment of the first disposable sensor card. A non-transient change may include one or more of changing color, changing shape, changing chemical composition or changing electrical characteristics. Furthermore, the interface may be configured to receive disposable sensor cards with varying sensing capabilities.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Russel Allyn Martin, Ana Rangelova Londergan, Justin Phelps Black, Rihui He, Igor Tchertkov, Raghu Subramanian Srivatsa
  • Publication number: 20150109265
    Abstract: This disclosure provides systems, methods and apparatus for an arrangement of pixels and interconnects in a display. In one aspect, polarities of pixels may be in a dot inversion configuration, or checkerboard pattern, to reduce the visibility of flicker. Various interconnect alternatively couple between modules in different columns or rows to provide dot inversion.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Edward Keat Leem Chan, Bing Wen, Cheonhong Kim, Wilhelmus Johannes Robertus Van Lier, Chih-Hsiang Ho, Rihui He, Ming-Hau Tung, Alok Govil, Jae Hyeong Seo
  • Patent number: 8803861
    Abstract: This disclosure provides systems, methods and apparatus for EMS devices. In one aspect, an EMS device includes an array of display elements and a plurality of driver lines with at least a portion of the plurality of driver lines routed above or below the array between one or more driver circuits and the array. In some implementations, at least a portion of the plurality of driver lines is disposed above a non-active area of the array. In one aspect, an EMS device can form a portion of at least one of the plurality of driver lines. In some implementations, movable layers of the array can be disposed between at least a portion of the plurality of driver lines and stationary electrodes of the display.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: August 12, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Tsongming Kao, Charles Leu, Kostadin Djordjev, Rihui He
  • Publication number: 20140028686
    Abstract: This disclosure provides systems, methods and apparatus for encapsulating a display device. In one aspect, an interferometric modulator (IMOD) is formed on a substrate. The IMOD includes an absorbing layer separated from the substrate, a reflective layer between the absorbing layer and the substrate, and an optical gap between the absorbing layer and the reflective layer. One or more thin film encapsulation layers hermetically seal the IMOD between the one or more thin film encapsulation layers and the substrate. In another aspect, an optical or functional layer can be formed over the one or more thin film encapsulation layers.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Rihui He, Marek Mienko, Alok Govil, Tsongming Kao
  • Publication number: 20130222351
    Abstract: This disclosure provides systems, methods and apparatus for EMS devices. In one aspect, an EMS device includes an array of display elements and a plurality of driver lines with at least a portion of the plurality of driver lines routed above or below the array between one or more driver circuits and the array. In some implementations, at least a portion of the plurality of driver lines is disposed above a non-active area of the array. In one aspect, an EMS device can form a portion of at least one of the plurality of driver lines. In some implementations, movable layers of the array can be disposed between at least a portion of the plurality of driver lines and stationary electrodes of the display.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 29, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Tsongming Kao, Charles Leu, Kostadin Djordjev, Rihui He
  • Publication number: 20130135184
    Abstract: This disclosure provides systems, methods and apparatus for encapsulating electromechanical systems devices. In one aspect, large arrays of electromechanical systems devices can be encapsulated. In one aspect the encapsulation includes an encapsulation layer supported over the electromechanical systems devices by encapsulation layer supports. The encapsulation layer can also include a plurality of orifices. The orifices can be sealed such that the electromechanical systems devices below are not damaged.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Ming-Hau Tung, Rihui He, Jon Bradley Lasiter
  • Publication number: 20130120327
    Abstract: This disclosure provides systems, methods and apparatus for storage capacitors. In one aspect, a device includes an array having at least a first display element and a second display element, at least one switch configured to control a flow of charge between a source and the first display element, and at least one interferometric optical mask structure disposed in a non-active area of the array between the first display element and the second display element. The optical mask structure includes a storage capacitor formed by a first conductive layer and a second conductive layer. The storage capacitor is electrically coupled to the at least one switch and the first display element.
    Type: Application
    Filed: June 26, 2012
    Publication date: May 16, 2013
    Applicant: Qualcomm Mems Technologies, Inc.
    Inventors: Jae Hyeong Seo, Ming-Hau Tung, Marc M. Mignard, Rihui He
  • Patent number: 8435838
    Abstract: A MEMS device may be package with a desiccant to provide a moisture-free environment. In order to avoid undesirable effects on the MEMS device, the desiccant may be selected or treated so as to be compatible with a particular MEMS device. This treatment may include baking of the desiccant to as to cause outgassing of moisture or other undesirable material. The structure of the MEMS device may also be altered to improve compatibility with particular desiccants.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 7, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Yen Hua Lin, Rihui He, Lingling Wu, Lauren Palmateer, David Heald
  • Publication number: 20130106875
    Abstract: This disclosure provides systems, methods, and apparatus for fabricating electromechanical systems devices. In one aspect, a method of sealing an electromechanical systems device includes etching a sacrificial layer. The sacrificial layer is formed between a surface of a substrate and a shell layer and is etched through etch holes in the shell layer formed over the electromechanical systems device. The etch holes in the shell layer have a diameter greater than about one micron. The shell layer is then treated. A seal layer is deposited on the treated shell layer. The seal layer hermetically seals the electromechanical systems device.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Rihui HE, Ana Rangelova LONDERGAN, Evgeni Petrovich GOUSEV
  • Publication number: 20130083038
    Abstract: This disclosure provides systems, methods and apparatus for fabricating spacers for electromechanical systems devices. In one aspect, a method of forming a spacer on a spacer portion of a device surface of an electromechanical systems device includes exposing the device surface to spacer particles suspended in a fluid. The spacer particles are allowed to attach to the spacer portion. Each of the spacer particles can have at least one dimension of about 1 micron to 10 microns. The electromechanical systems device can also include a sacrificial layer that is subsequently removed between the device surface and a substrate surface of a substrate on which the electromechanical systems device is formed.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 4, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventor: Rihui HE
  • Publication number: 20130057558
    Abstract: This disclosure provides systems, methods and apparatus for controlling a mechanical layer. In one aspect, an electromechanical systems device includes a substrate and a mechanical layer positioned over the substrate to define a gap. The mechanical layer is movable in the gap between an actuated position and a relaxed position, and includes a mirror layer, a cap layer, and a dielectric layer disposed between the mirror layer and the cap layer. The mechanical layer is configured to have a curvature in a direction away from the substrate when the mechanical layer is in the relaxed position. In some implementations, the mechanical layer can be formed to have a positive stress gradient directed toward the substrate that can direct the curvature of the mechanical layer upward when the sacrificial layer is removed.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Chuan Pu, Yi Tao, Chandra S. Tupelly, Kostadin D. Djordjev, Fan Zhong, Rihui He, Wenyue Zhang
  • Publication number: 20120162232
    Abstract: This disclosure provides systems, methods, and apparatus for encapsulated electromechanical systems. In one aspect, a release path includes a release hole through an encapsulation layer. The release path exposes a portion of a first sacrificial layer that extends beyond a second sacrificial layer in a horizontal direction. This allows the first sacrificial layer and the second sacrificial layer to later be etched through the release path. The corresponding electromechanical system device includes a shell layer encapsulating a mechanical layer. A conformal layer seals a release hole that extends through a shell layer. A portion of the conformal layer blocks the opening of the release passage within the release hole. The release passage has substantially the same vertical height as a gap that defines the spacing between the mechanical layer and a substrate.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: RIHUI HE, Xiaoming Yan, Je-Hsiung Lan
  • Publication number: 20110012219
    Abstract: A MEMS device may be package with a desiccant to provide a moisture-free environment. In order to avoid undesirable effects on the MEMS device, the desiccant may be selected or treated so as to be compatible with a particular MEMS device. This treatment may include baking of the desiccant to as to cause outgassing of moisture or other undesirable material. The structure of the MEMS device may also be altered to improve compatibility with particular desiccants.
    Type: Application
    Filed: September 28, 2007
    Publication date: January 20, 2011
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Yen Hua Lin, Rihui He, Lingling Wu, Lauren Palmateer, David Heald
  • Patent number: 7738158
    Abstract: Methods, devices, and systems provide MEMS devices exhibiting at least one of reduced stiction, reduced hydrophilicity, or reduced variability of certain electrical characteristics using MEMS devices treated with water vapor. The treatment is believed to form one or more passivated surfaces on the interior and/or exterior of the MEMS devices. Relatively gentle temperature and pressure conditions ensure modification of surface chemistry without excessive water absorption after removal of sacrificial material to release the MEMS devices.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 15, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Bangalore R. Natarajan, Kasra Khazeni, David Heald, Rihui He, Sriram Akella, Evgeni Gousev
  • Publication number: 20090002804
    Abstract: Methods, devices, and systems provide MEMS devices exhibiting at least one of reduced stiction, reduced hydrophilicity, or reduced variability of certain electrical characteristics using MEMS devices treated with water vapor. The treatment is believed to form one or more passivated surfaces on the interior and/or exterior of the MEMS devices. Relatively gentle temperature and pressure conditions ensure modification of surface chemistry without excessive water absorption after removal of sacrificial material to release the MEMS devices.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 1, 2009
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Bangalore R. Natarajan, Kasra Khazeni, David Heald, Rihui He, Sriram Akella, Evgeni Gousev
  • Publication number: 20060273065
    Abstract: A method of forming free standing microstructures includes providing a substrate and forming a sacrificial layer on the substrate. A thin-film structural layer is then formed around and over the sacrificial layer. The sacrificial layer may be formed from an electrically conductive or non-electrically conductive material in certain embodiments of the invention. Nanometer-scale pores are then introduced through the thin-film structural layer by a non-lithographic method, such as anodic etching. Via the pores, at least a portion of the sacrificial layer is etched away or otherwise removed from underneath the thin-film structural layer. The free standing microstructures may be sealed by application of a sealing layer on top thereof. The microstructure may form an encapsulating cavity and provide integrated on-wafer packaging if separate microdevices are disposed inside the cavity. The entire process may be done at or near room temperature in some cases.
    Type: Application
    Filed: June 1, 2006
    Publication date: December 7, 2006
    Applicant: The Regents of the University of California
    Inventors: Chang-Jin Kim, Rihui He, Fardad Chamran