Patents by Inventor Riichi Nishimura

Riichi Nishimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9321919
    Abstract: A method of manufacturing a nanocomposite having a continuous organic phase and oligomer-modified nanoplatelet mesomorphic structures, wherein the oligomer has a molecular weight of at least 100 g/mol.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: April 26, 2016
    Assignees: THE TEXAS A&M UNIVERSITY SYSTEM, KANEKA CORPORATION
    Inventors: Hung-Jue Sue, Minhao Wong, Peng Li, Riichi Nishimura
  • Publication number: 20150037239
    Abstract: A method for dispersing nanotubes, comprising forming a nanocomposite solution with associated nanotubes and nanoplatelets, mixing a surfactant to the nanocomposite solution, separating the nanocomposite in solution, wherein the nanotubes remain suspended in the surfactant solution, and isolating the nanotubes in solution. In certain instances, the method further comprises functionalizing the nanotubes in solution.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 5, 2015
    Applicants: KANEKA NORTH AMERICA LLC, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Hung-Jue SUE, Xi ZHANG, Riichi NISHIMURA
  • Patent number: 8894963
    Abstract: A method for dispersing nanotubes, comprising forming a nanocomposite solution with associated nanotubes and nanoplatelets, mixing a surfactant to the nanocomposite solution, separating the nanocomposite in solution, wherein the nanotubes remain suspended in the surfactant solution, and isolating the nanotubes in solution. In certain instances, the method further comprises functionalizing the nanotubes in solution.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: November 25, 2014
    Assignees: The Texas A&M University System, Kaneka Texas Corporation
    Inventors: Hung-Jue Sue, Xi Zhang, Riichi Nishimura
  • Publication number: 20140193590
    Abstract: A method of manufacturing a nanocomposite having a continuous organic phase and oligomer-modified nanoplatelet mesomorphic structures, wherein the oligomer has a molecular weight of at least 100 g/mol.
    Type: Application
    Filed: October 1, 2013
    Publication date: July 10, 2014
    Applicants: Kaneka Corporation, The Texas A&M University System
    Inventors: Hung-Jue Sue, Minhao Wong, Peng Li, Riichi Nishimura
  • Publication number: 20120095143
    Abstract: A method for dispersing nanotubes, comprising forming a nanocomposite solution with associated nanotubes and nanoplatelets, mixing a surfactant to the nanocomposite solution, separating the nanocomposite in solution, wherein the nanotubes remain suspended in the surfactant solution, and isolating the nanotubes in solution. In certain instances, the method further comprises functionalizing the nanotubes in solution.
    Type: Application
    Filed: December 28, 2010
    Publication date: April 19, 2012
    Applicants: KANEKA TEXAS CORPORATION, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Hung-Jue Sue, Xi Zhang, Riichi Nishimura
  • Patent number: 7482382
    Abstract: The present invention is directed to novel sol-gel methods in which metal oxide precursor and an alcohol-based solution are mixed to form a reaction mixture that is then allowed to react to produce nanosized metal oxide particles. The methods of the present invention are more suitable for preparing nanosized metal oxide than are previously-described sol-gel methods. The present invention can provide for nanosized metal oxide particles more efficiently than the previously-described sol-gel methods by permitting higher concentrations of metal oxide precursor to be employed in the reaction mixture. The foregoing is provided by careful control of the pH conditions during synthesis and by ensuring that the pH is maintained at a value of about 7 or higher.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: January 27, 2009
    Assignees: The Texas A&M University System, Kaneka Corporation
    Inventors: Yuntao Li, Hung-Jue Sue, Riichi Nishimura, Nobuo Miyatake
  • Patent number: 7338706
    Abstract: A resin composition for capstock, comprising 100 to 30 parts by weight of an impact resistance modifier having a multilayer structure, and 0 to 70 parts by weight of a methyl methacrylate (co)polymer containing 50 to 100% by weight of methyl methacrylate and 50 to 0% by weight of a monomer which is copolymerizable therewith, wherein the total amount of the impact resistance modifier and the methyl methacrylate (co)polymer is 100 parts by weight, wherein the outer layer of said impact resistance modifier and/or said methyl methacrylate copolymer is copolymerized with 0.5 to 40% by weight of a reactive monomer based on the total amount of the impact resistance modifier and the methyl methacrylate (co)polymer as a polymer component, and wherein the homopolymer of said reactive monomer has an SP value of 9.8 (cal/cm3)/1/2 or more.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: March 4, 2008
    Assignees: Kaneka Corporation, Kaneka Texas Corporation
    Inventors: Riichi Nishimura, Takahiko Sugaya
  • Patent number: 7105602
    Abstract: The present invention provides a processing aid for thermoplastic resin having a weight average molecular weight of 10,000 to 300,000, which is obtained by polymerizing an alkyl (meth)acrylate, or an alkyl (meth)acrylate and another vinyl monomer copolymerizable therewith, in the presence of a mercaptan having an alkyl ester group with C4-20 alkyl group as a chain transfer agent, and/or an organic peroxide having a tertiary-butyl peroxy group as a polymerization initiator.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: September 12, 2006
    Assignee: Kaneka Corporation
    Inventors: Takenobu Sunagawa, Riichi Nishimura, Toshiyuki Mori, Akira Takaki
  • Publication number: 20050260122
    Abstract: The present invention is directed to novel sol-gel methods in which metal oxide precursor and an alcohol-based solution are mixed to form a reaction mixture that is then allowed to react to produce nanosized metal oxide particles. The methods of the present invention are more suitable for preparing nanosized metal oxide than are previously-described sol-gel methods. The present invention can provide for nanosized metal oxide particles more efficiently than the previously-described sol-gel methods by permitting higher concentrations of metal oxide precursor to be employed in the reaction mixture. The foregoing is provided by careful control of the pH conditions during synthesis and by ensuring that the pH is maintained at a value of about 7 or higher.
    Type: Application
    Filed: May 19, 2004
    Publication date: November 24, 2005
    Applicants: Texas A&M University System
    Inventors: Yuntao Li, Hung-Jue Sue, Riichi Nishimura, Nobuo Miyatake
  • Patent number: 6844396
    Abstract: An acrylic resin composition with excellent impact resistance, weatherability, processability and low gloss is provided. The acrylic resin composition comprises, (A) 10 to 40 parts by weight of a high molecular weight acrylic (co)polymer which is a one-step or multi-step polymer containing 72 to 100% by weight of methyl methacrylate and 0 to 28% by weight of a copolymerizable monomer, the (co)polymer having a specific viscosity of at least 0.5 (solvent: toluene, concentration: 0.4%, temperature: 30° C.), wherein a polymer layer obtained in one of the steps contains at least 72% by weight of methyl methacrylate, has a specific viscosity of at least 0.5 and makes up at least 55% by weight of the total weight of the high molecular weight acrylic (co)polymer (A); (B) 0 to 80 parts by weight of an acrylic (co)polymer containing 50 to 100% by weight of methyl methacrylate and 0 to 50% by weight of a copolymerizable monomer, the acrylic (co)polymer having a specific viscosity of less than 0.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: January 18, 2005
    Assignees: Kaneka Corporation, Kaneka Texas Corporation
    Inventors: Takahiko Sugaya, Riichi Nishimura, Kazuhisa Tajima
  • Patent number: 6773821
    Abstract: An acrylic resin composition suitable for the preparation of capstock for siding panels and having excellent impact resistance, weatherability and processability and a low gloss, which comprises 30 to 100% by weight of an impact modifier having a multilayer structure and 0 to 70% by weight of a methyl methacrylate homopolymer or copolymer and whose MFI (melt flow index measured according to ASTM D-1238 at 230° C. and a load of 3.8 kg) is not more than 0.35 g/10 minutes.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: August 10, 2004
    Assignees: Kaneka Corporation, Kaneka Texas Corporation
    Inventors: Kazuhisa Tajima, Riichi Nishimura, Takahiko Sugaya
  • Publication number: 20040102578
    Abstract: A resin composition for capstock, comprising 100 to 30 parts by weight of an impact resistance modifier having a multilayer structure, and 0 to 70 parts by weight of a methyl methacrylate (co)polymer containing 50 to 100% by weight of methyl methacrylate and 50 to 0% by weight of a monomer which is copolymerizable therewith, wherein the total amount of the impact resistance modifier and the methyl methacrylate (co)polymer is 100 parts by weight, wherein the outer layer of said impact resistance modifier and/or said methyl methacrylate copolymer is copolymerized with 0.5 to 40% by weight of a reactive monomer based on the total amount of the impact resistance modifier and the methyl methacrylate (co)polymer as a polymer component, and wherein the homopolymer of said reactive polymer has an SP value of 9.8 (cal/cm3)½ of more.
    Type: Application
    Filed: June 30, 2003
    Publication date: May 27, 2004
    Inventors: Riichi Nishimura, Takahiko Sugaya
  • Publication number: 20040043235
    Abstract: An acrylic resin composition with excellent impact resistance, weatherability, processability and low gloss is provided. The acrylic resin composition comprises, (A) 10 to 40 parts by weight of a high molecular weight acrylic (co)polymer which is a one-step or multi-step polymer containing 72 to 100% by weight of methyl methacrylate and 0 to 28% by weight of a copolymerizable monomer, the (co)polymer having a specific viscosity of at least 0.5 (solvent: toluene, concentration: 0.4%, temperature: 30° C.), wherein a polymer layer obtained in one of the steps contains at least 72% by weight of methyl methacrylate, has a specific viscosity of at least 0.5 and makes up at least 55% by weight of the total weight of the high molecular weight acrylic (co)polymer (A); (B) 0 to 80 parts by weight of an acrylic (co)polymer containing 50 to 100% by weight of methyl methacrylate and 0 to 50% by weight of a copolymerizable monomer, the acrylic (co)polymer having a specific viscosity of less than 0.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 4, 2004
    Inventors: Takahiko Sugaya, Riichi Nishimura, Kazuhisa Tajima
  • Patent number: 6555245
    Abstract: An acrylic resin composition suitable for the preparation of capstock for siding panels and having excellent impact resistance, weatherability and processability and a low gloss, which comprises 30 to 100% by weight of an impact modifier having a multilayer structure and 0 to 70% by weight of a methyl methacrylate homopolymer or copolymer and whose MFI (melt flow index measured according to ASTM D-1238 at 230° C. and a load of 3.8 kg) is no more than 0.2 g/10 minutes.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: April 29, 2003
    Assignees: Kaneka Corporation, Kaneka Texas Corporation
    Inventors: Kazuhisa Tajima, Riichi Nishimura, Takahiko Sugaya
  • Publication number: 20020177658
    Abstract: An acrylic resin composition suitable for the preparation of capstock for siding panels and having excellent impact resistance, weatherability and processability and a low gloss, which comprises 30 to 100% by weight of an impact modifier having a multilayer structure and 0 to 70% by weight of a methyl methacrylate homopolymer or copolymer and whose MFI (melt flow index measured according to ASTM D-1238 at 230° C. and a load of 3.8 kg) is no more than 0.2 g/10 minutes.
    Type: Application
    Filed: December 20, 2000
    Publication date: November 28, 2002
    Applicant: KANEKA CORPORATION,
    Inventors: Kazuhisa Tajima, Riichi Nishimura, Takahiko Sugaya
  • Publication number: 20020123568
    Abstract: An acrylic resin composition suitable for the preparation of capstock for siding panels and having excellent impact resistance, weatherability and processability and a low gloss, which comprises 30 to 100% by weight of an impact modifier having a multilayer structure and 0 to 70% by weight of a methyl methacrylate homopolymer or copolymer and whose MFI (melt flow index measured according to ASTM D-1238 at 230° C. and a load of 3.8 kg) is not more than 0.35 g/10 minutes.
    Type: Application
    Filed: December 28, 2001
    Publication date: September 5, 2002
    Applicant: Kaneka Corporation
    Inventors: Kazuhisa Tajima, Riichi Nishimura, Takahiko Sugaya
  • Patent number: 6204327
    Abstract: A vinyl chloride resin composition containing a graft copolymer A having an average particle diameter of at least 0.15 &mgr;m, prepared by polymerizing 50 to 90% of a solid matter of a rubber latex having a glass transition temperature of at most O° C., the rubber latex being prepared by polymerizing 50 to 100% of butadiene and/or alkyl acrylate, 0 to 40% of an aromatic vinyl monomer, 0 to 10% of a vinyl monomer and 0 to 5% of a polyfunctional monomer, with 10 to 50% of a mixture comprising 10 to 100% of an alkyl methacrylate, 0 to 90% of an aromatic vinyl monomer, 0 to 25% of a vinyl cyamide monomer and 0 to 20% of a vinyl monomer; a graft copolymer B having an average particle diameter of 0.05 to 0.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: March 20, 2001
    Assignee: Kaneka Corporation
    Inventors: Akira Takaki, Shinichi Yauchi, Koji Yui, Riichi Nishimura, Kentaro Takesada