Patents by Inventor Riki Thao

Riki Thao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210275806
    Abstract: Catheter systems include direction-sensitive, multi-polar tip electrode assemblies for electroporation-mediated therapy, electroporation-induced primary necrosis therapy and electric field-induced apoptosis therapy, including configurations for producing narrow, linear lesions as well as distributed, wide area lesions. A monitoring system for electroporation therapy includes a mechanism for delivering electrochromic dyes to a tissue site as well as a fiber optic arrangement to optically monitor the progress of the therapy as well as to confirm success post-therapy. A fiber optic temperature sensing electrode catheter includes a tip electrode having a cavity whose inner surface is impregnated or coated with thermochromic/thermotropic material that changes color with changes in temperature. An optic fiber/detector arrangement monitors the thermochromic or thermotropic materials, acquiring a light signal and generating an output signal indicative of the spectrum of the light signal.
    Type: Application
    Filed: April 12, 2021
    Publication date: September 9, 2021
    Inventors: Saurav Paul, Troy T. Tegg, Israel A, Byrd, Riki Thao, Harry A. Puryear, Linda Nemec
  • Patent number: 11000684
    Abstract: Catheter systems include direction-sensitive, multi-polar tip electrode assemblies for electroporation-mediated therapy, electroporation-induced primary necrosis therapy and electric field-induced apoptosis therapy, including configurations for producing narrow, linear lesions as well as distributed, wide area lesions. A monitoring system for electroporation therapy includes a mechanism for delivering electrochromic dyes to a tissue site as well as a fiber optic arrangement to optically monitor the progress of the therapy as well as to confirm success post-therapy. A fiber optic temperature sensing electrode catheter includes a tip electrode having a cavity whose inner surface is impregnated or coated with thermochromic/thermotropic material that changes color with changes in temperature. An optic fiber/detector arrangement monitors the thermochromic or thermotropic materials, acquiring a light signal and generating an output signal indicative of the spectrum of the light signal.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: May 11, 2021
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Saurav Paul, Troy T. Tegg, Israel A. Byrd, Riki Thao, Harry A. Puryear, Linda Nemec
  • Patent number: 10799176
    Abstract: Systems and methods are disclosed for assessing tissue contact, e.g., for mapping, tissue ablation, or other procedures. An exemplary tissue contact sensing system comprises a flexible tip device. At least one piezoelectric sensor is housed within the flexible tip device. The at least one piezoelectric sensor is responsive to contact stress of the flexible tip device by generating electrical signals corresponding to the amount of contact stress. An output device is electrically connected to the at least one piezoelectric sensor. The output device receives the electrical signals for assessing tissue contact by the flexible tip device. Methods for assembling and using the flexible tip device are also disclosed.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: October 13, 2020
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Riki Thao, Saurav Paul
  • Publication number: 20200269038
    Abstract: Catheter systems include direction-sensitive, multi-polar tip electrode assemblies for electroporation-mediated therapy, electroporation-induced primary necrosis therapy and electric field-induced apoptosis therapy, including configurations for producing narrow, linear lesions as well as distributed, wide area lesions. A monitoring system for electroporation therapy includes a mechanism for delivering electrochromic dyes to a tissue site as well as a fiber optic arrangement to optically monitor the progress of the therapy as well as to confirm success post-therapy. A fiber optic temperature sensing electrode catheter includes a tip electrode having a cavity whose inner surface is impregnated or coated with thermochromic/thermotropic material that changes color with changes in temperature. An optic fiber/detector arrangement monitors the thermochromic or thermotropic materials, acquiring a light signal and generating an output signal indicative of the spectrum of the light signal.
    Type: Application
    Filed: May 13, 2020
    Publication date: August 27, 2020
    Inventors: Saurav Paul, Troy T. Tegg, Israel A. Byrd, Riki Thao, Harry A. Puryear, Linda Nemec
  • Patent number: 10716672
    Abstract: A system for determining the dimensions of a native valve annulus may include a sensing catheter, a transmitter, and a computing device. The sensing catheter may include a shaft extending in a longitudinal direction; a plurality of splines attached to the shaft, the splines having an expanded condition spaced radially outward from the shaft; and at least one sensing coil located on each of the splines. The transmitter may generate a magnetic field to induce a potential in each of the sensing coils, and the computing device may identify the positions of the sensing coils based on the induced potentials.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: July 21, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Neelakantan Saikrishnan, John Hauck, Riki Thao
  • Publication number: 20200205881
    Abstract: An electrode head is disclosed that utilizes electrically conductive or dissipative fabric to exchange electrical energy with tissue. This electrode head may be used for any appropriate application, such as a catheter electrode, a return electrode, or the like. Any appropriate function may be provided by this electrode head, such as tissue ablation, tissue mapping, or providing an electrical ground.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 2, 2020
    Inventors: Saurav Paul, Riki Thao, Hong Cao, Kedar Ravindra Belhe
  • Patent number: 10688300
    Abstract: Catheter systems include direction-sensitive, multi-polar tip electrode assemblies for electroporation-mediated therapy, electroporation-induced primary necrosis therapy and electric field-induced apoptosis therapy, including configurations for producing narrow, linear lesions as well as distributed, wide area lesions. A monitoring system for electroporation therapy includes a mechanism for delivering electrochromic dyes to a tissue site as well as a fiber optic arrangement to optically monitor the progress of the therapy as well as to confirm success post-therapy. A fiber optic temperature sensing electrode catheter includes a tip electrode having a cavity whose inner surface is impregnated or coated with thermochromic/thermotropic material that changes color with changes in temperature. An optic fiber/detector arrangement monitors the thermochromic or thermotropic materials, acquiring a light signal and generating an output signal indicative of the spectrum of the light signal.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: June 23, 2020
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Saurav Paul, Troy T. Tegg, Israel A. Byrd, Riki Thao, Harry A. Puryear, Linda Nemec
  • Patent number: 10582882
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: March 10, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Patent number: 10314641
    Abstract: A medical device utilizing temperature sensing to identify or assess anatomical bodies or structures includes an elongate tubular member, at least one electrode, a thermal sensor, and a temperature response assessment system or component. The at least one electrode may be connected to the distal portion of the elongate tubular member, and the one or more electrode can be configured to provide energy or heat to a portion of an anatomical body or structure. The thermal sensor may be configured to measure the thermal response of the portion of an anatomical body or structure, e.g., tissue or blood pools. The temperature response assessment system or component can be coupled to the thermal sensor. In embodiments, the device may include a lumen and port opening, which may accommodate a tool, such as a needle. Methods for using temperature sensing to identify an anatomical body or structure are also disclosed.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: June 11, 2019
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Saurav Paul, Todd R. Stangenes, Riki Thao
  • Publication number: 20190053848
    Abstract: A catheter assembly for assessing contact between the catheter assembly and tissue is disclosed. The assembly includes a catheter shaft and a pressure sensitive conductive composite member whose electrical resistance varies with pressure applied to the catheter assembly. The assembly also includes at least one measurement terminal to permit the measurement of changes in the electrical characteristics of the pressure sensitive conductive composite member. The assembly may optionally include a measurement device to measure resistance, impedance and/or other electrical characteristics. The assembly may utilize a reference electrode secured to the patient's tissue, which permits the measurement device to measure changes between the reference electrode and the at least one measurement terminal. Optionally, the assembly may include a conductive outer layer.
    Type: Application
    Filed: August 30, 2018
    Publication date: February 21, 2019
    Inventors: Hong Cao, Riki Thao, Saurav Paul
  • Patent number: 10182860
    Abstract: An electrode catheter and a method for assessing electrode-tissue contact and coupling are disclosed. An exemplary electrode catheter comprises an electrode adapted to apply electrical energy. A measurement circuit is adapted to measure impedance between the electrode and ground as the electrode approaches a target tissue. A processor determines a contact and coupling condition for the target tissue based at least in part on reactance of the impedance measured by the measurement circuit. In another exemplary embodiment, the electrode catheter determines the contact and coupling condition based at least in part on a phase angle of the impedance.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: January 22, 2019
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Saurav Paul, Hong Cao, Kedar R. Belhe, Riki Thao
  • Patent number: 9949792
    Abstract: The present invention is directed to bipolar ablation systems. A bipolar electrode system for ablation therapy is disclosed, including a pressure-sensitive conducting composite layer and a pair of electrodes in electrical conductive contact or communication with the pressure-sensitive conducting composite layer. Energy (e.g., ablation energy) is delivered via the pressure-sensitive conductive composition when sufficient pressure is applied to transform the pressure-sensitive conductive composite to an electrical conductor. An electrically insulative flexible layer, which may include a passageway for a fill material is also disclosed. In some embodiments, the systems can also be used for targeted delivery of compounds, such as drugs, using a bipolar electrode.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 24, 2018
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Saurav Paul, Harry A. Puryear, Riki Thao, Hong Cao
  • Publication number: 20180078300
    Abstract: An electrode coupling output system provides indication to the physician, via electrode guidance instrumentation, concerning the electrical coupling of an electrode, such as an ablative or mapping electrode, with a patient. The output can be provided to the physician via an output device incorporated into the handle set of the electrode catheter. For example, a visual, audio or mechanical output can be provided via the handle set. Additionally or alternatively, the output can be provided to the physician via a navigation system. The indication may be provided by changing the color or other display characteristics of the electrode on the navigation system display or by way of providing a waveform indicating the electrode coupling. In this manner, electrode coupling information is provided to a physician in a manner that minimizes physician distraction.
    Type: Application
    Filed: September 26, 2017
    Publication date: March 22, 2018
    Inventors: Saurav Paul, Kedar Ravindra Belhe, Hong Cao, Riki Thao, James A. Hassett
  • Publication number: 20180078177
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 22, 2018
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Patent number: 9867556
    Abstract: A system for detecting the dimensions and geometry of a native valve annulus for trans-catheter valve implantation includes a compliant balloon and a shaft within the balloon. One or more drive electrodes may be affixed to a surface of the balloon, and one or more sense electrodes may be affixed to the shaft. After insertion of the balloon into the native valve annulus, the drive electrodes may be energized with a predetermined voltage. Using a trained statistical model and the voltages measured at the sense electrodes, initial estimates of the cross-section of the valve annulus may be obtained. The initial estimates may then be provided to an optimization model of the valve annulus to obtain a highly accurate prediction of the cross-section of the valve annulus.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: January 16, 2018
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Ramji T. Venkatasubramanian, Anthony David Hill, John Hauck, Neelakantan Saikrishnan, Riki Thao
  • Publication number: 20170035491
    Abstract: An electrode head is disclosed that utilizes electrically conductive or dissipative fabric to exchange electrical energy with tissue. This electrode head may be used for any appropriate application, such as a catheter electrode, a return electrode, or the like. Any appropriate function may be provided by this electrode head, such as tissue ablation, tissue mapping, or providing an electrical ground.
    Type: Application
    Filed: October 19, 2016
    Publication date: February 9, 2017
    Inventors: Saurav Paul, Riki Thao, Hong Cao, Kedar Ravindra Belhe
  • Patent number: 9474566
    Abstract: An electrode head is disclosed that utilizes electrically conductive or dissipative fabric to exchange electrical energy with tissue. This electrode head may be used for any appropriate application, such as a catheter electrode, a return electrode, or the like. Any appropriate function may be provided by this electrode head, such as tissue ablation, tissue mapping, or providing an electrical ground.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: October 25, 2016
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Saurav Paul, Riki Thao, Hong Cao, Kedar Ravindra Belhe
  • Publication number: 20160296333
    Abstract: A system for determining the dimensions of a native valve annulus may include a sensing catheter, a transmitter, and a computing device. The sensing catheter may include a shaft extending in a longitudinal direction; a plurality of splines attached to the shaft, the splines having an expanded condition spaced radially outward from the shaft; and at least one sensing coil located on each of the splines. The transmitter may generate a magnetic field to induce a potential in each of the sensing coils, and the computing device may identify the positions of the sensing coils based on the induced potentials.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 13, 2016
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Ram Kumar Balachandran, Neelakantan Saikrishnan, John Hauck, Riki Thao
  • Publication number: 20160256682
    Abstract: Catheter systems include direction-sensitive, multi-polar tip electrode assemblies for electroporation-mediated therapy, electroporation-induced primary necrosis therapy and electric field-induced apoptosis therapy, including configurations for producing narrow, linear lesions as well as distributed, wide area lesions. A monitoring system for electroporation therapy includes a mechanism for delivering electrochromic dyes to a tissue site as well as a fiber optic arrangement to optically monitor the progress of the therapy as well as to confirm success post-therapy. A fiber optic temperature sensing electrode catheter includes a tip electrode having a cavity whose inner surface is impregnated or coated with thermochromic/thermotropic material that changes color with changes in temperature. An optic fiber/detector arrangement monitors the thermochromic or thermotropic materials, acquiring a light signal and generating an output signal indicative of the spectrum of the light signal.
    Type: Application
    Filed: March 9, 2016
    Publication date: September 8, 2016
    Inventors: Saurav Paul, Troy T. Tegg, Israel A. Byrd, Riki Thao, Harry A. Puryear, Linda Nemec, John M. Berns
  • Publication number: 20160220298
    Abstract: An electrode catheter and a method for assessing electrode-tissue contact and coupling are disclosed. An exemplary electrode catheter comprises an electrode adapted to apply electrical energy. A measurement circuit is adapted to measure impedance between the electrode and ground as the electrode approaches a target tissue. A processor determines a contact and coupling condition for the target tissue based at least in part on reactance of the impedance measured by the measurement circuit. In another exemplary embodiment, the electrode catheter determines the contact and coupling condition based at least in part on a phase angle of the impedance.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 4, 2016
    Inventors: Saurav Paul, Hong Cao, Kedar R. Belhe, Riki Thao