Patents by Inventor Rinkle Jain

Rinkle Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250112160
    Abstract: Embodiments disclosed herein include an apparatus for bump translation. In an embodiment, the apparatus includes a substrate with a first bump field with a first height and a first depth on the substrate, where the first depth is orthogonal to the first height, and where the first bump field further comprises a first pitch in a direction of the first height. In an embodiment, the apparatus includes a second bump field with a second height and a second depth on the substrate, where the second depth is orthogonal to the second height, and where the second bump field comprises a second pitch in a direction of the second height, where the second pitch is smaller than the first pitch. Embodiments include a third bump field with a third height and the second depth, where a sum of the second height and the third height is equal to the first height.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 3, 2025
    Inventors: Andrew P. COLLINS, Jian Yong XIE, Aruna KUMAR, Rinkle JAIN, Basavaraj KANTHI
  • Patent number: 12095712
    Abstract: A transceiver may include a transmitter device, a receiver device, a secondary receiver device, and switching elements. The transmitter device may provide a transmit control signal on first and second channels. The receiver device may receive a receive control signal on the first and second channels. The secondary receiver device may monitor occupation of the first and second channels without decoding at least a portion of control signals concurrent with the receiver device receiving the receive control signal. The switching elements may control when the transmitter device provides the transmit control signal to one of and is electrically isolated from first and second antennas, the receiver device receives the receive control signal from one of and is electrically isolated from the first and second antennas, and the secondary receiver device monitors occupation of one of the first and second channels and is electrically isolated from the first and second antennas.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: September 17, 2024
    Assignee: Intel Corporation
    Inventors: Brent R. Carlton, Asma Beevi Kuriparambil Thekkumpate, Renzhi Liu, Rinkle Jain
  • Patent number: 11921529
    Abstract: Described is an apparatus which comprises: a plurality of transistors coupled to an input power supply and to a load; a first comparator with a first node coupled to the load, and a second node coupled to a first reference; a second comparator with a first node coupled to the load, and a second node coupled to a second reference, the second reference being different from the first reference; and a logic unit to receive output of the first comparator and output of the second comparator, the logic unit to turn on or off transistors of the plurality of transistors according to outputs of the first and second comparators.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Yi-Chun Shih, Kaushik Mazumdar, Stephen T. Kim, Rinkle Jain, James W. Tschanz, Muhammad M. Khellah
  • Patent number: 11757357
    Abstract: An on-die voltage regulator (VR) is provided that can deliver much higher conversion efficiency than the traditional solution (e.g., FIVR, LDO) during the standby mode of a system-on-chip (SOC), and it can save the power consumption significantly, during the connected standby mode. The VR operates as a switched capacitor VR under the low load current condition that is common during the standby mode of the SOC, while it automatically switches to the digital linear VR operation to handle a sudden high load current condition at the exit from the standby condition. A digital proportional-integral-derivative (PID) controller or a digital proportional-derivative-averaging (PDA) controller is used to achieve a very low power operation with stability and robustness. As such, the hybrid VR achieves much higher conversion efficiency than the linear voltage regulator (LVR) for low load current condition (e.g., lower than 500 mA).
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Takao Oshita, Fabrice Paillet, Rinkle Jain, Jad Rizk, Danny Bronstein, Ahmad Arnaot
  • Publication number: 20220239222
    Abstract: An on-die voltage regulator (VR) is provided that can deliver much higher conversion efficiency than the traditional solution (e.g., FIVR, LDO) during the standby mode of a system-on-chip (SOC), and it can save the power consumption significantly, during the connected standby mode. The VR operates as a switched capacitor VR under the low load current condition that is common during the standby mode of the SOC, while it automatically switches to the digital linear VR operation to handle a sudden high load current condition at the exit from the standby condition. A digital proportional-integral-derivative (PID) controller or a digital proportional-derivative-averaging (PDA) controller is used to achieve a very low power operation with stability and robustness. As such, the hybrid VR achieves much higher conversion efficiency than the linear voltage regulator (LVR) for low load current condition (e.g., lower than 500 mA).
    Type: Application
    Filed: April 6, 2022
    Publication date: July 28, 2022
    Inventors: Takao Oshita, Fabrice Paillet, Rinkle Jain, Jad Rizk, Danny Bronstein, Ahmad Arnaot
  • Publication number: 20220200776
    Abstract: A transceiver may include a transmitter device, a receiver device, a secondary receiver device, and switching elements. The transmitter device may provide a transmit control signal on first and second channels. The receiver device may receive a receive control signal on the first and second channels. The secondary receiver device may monitor occupation of the first and second channels without decoding at least a portion of control signals concurrent with the receiver device receiving the receive control signal. The switching elements may control when the transmitter device provides the transmit control signal to one of and is electrically isolated from first and second antennas, the receiver device receives the receive control signal from one of and is electrically isolated from the first and second antennas, and the secondary receiver device monitors occupation of one of the first and second channels and is electrically isolated from the first and second antennas.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Brent R. CARLTON, Richard DORRANCE, Kenneth P. FOUST, Asma Beevi KURIPARAMBIL THEKKUMPATE, Renzhi LIU, Rinkle JAIN
  • Patent number: 11323026
    Abstract: An on-die voltage regulator (VR) is provided that can deliver much higher conversion efficiency than the traditional solution (e.g., FIVR, LDO) during the standby mode of a system-on-chip (SOC), and it can save the power consumption significantly, during the connected standby mode. The VR operates as a switched capacitor VR under the low load current condition that is common during the standby mode of the SOC, while it automatically switches to the digital linear VR operation to handle a sudden high load current condition at the exit from the standby condition. A digital proportional-integral-derivative (PID) controller or a digital proportional-derivative-averaging (PDA) controller is used to achieve a very low power operation with stability and robustness. As such, the hybrid VR achieves much higher conversion efficiency than the linear voltage regulator (LVR) for low load current condition (e.g., lower than 500 mA).
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: May 3, 2022
    Assignee: Intel Corporation
    Inventors: Takao Oshita, Fabrice Paillet, Rinkle Jain, Jad Rizk, Danny Bronstein, Ahmad Arnaot
  • Patent number: 11271475
    Abstract: Disclosed is an N:1 (where N is an integer such as 3 or higher) resonant star topology converter to generate an input supply (e.g., 1.8V) for a processor (e.g., a system-on-chip (SOC)) from a higher power supply source (e.g., 12.6V) such as a battery or other source. The resonant star topology based regulator can be realized by a combination of on-die and on-package components as opposed to voltage regulators on motherboard with discrete inductor and capacitors. In one example, capacitors of the N:1 resonant star topology are implemented as multilayer ceramic capacitors (MLCC). The architecture of the N:1 resonant star topology based regulator results in high bandwidth. For example, compared to traditional step-down voltage regulators, the N:1 resonant star topology based regulator exhibits ten times higher bandwidth.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: March 8, 2022
    Assignee: Intel Corporation
    Inventors: Rinkle Jain, Jonathan Douglas, Shivadarshan Rajeurs
  • Publication number: 20210075316
    Abstract: An on-die voltage regulator (VR) is provided that can deliver much higher conversion efficiency than the traditional solution (e.g., FIVR, LDO) during the standby mode of a system-on-chip (SOC), and it can save the power consumption significantly, during the connected standby mode. The VR operates as a switched capacitor VR under the low load current condition that is common during the standby mode of the SOC, while it automatically switches to the digital linear VR operation to handle a sudden high load current condition at the exit from the standby condition. A digital proportional-integral-derivative (PID) controller or a digital proportional-derivative-averaging (PDA) controller is used to achieve a very low power operation with stability and robustness. As such, the hybrid VR achieves much higher conversion efficiency than the linear voltage regulator (LVR) for low load current condition (e.g., lower than 500 mA).
    Type: Application
    Filed: September 6, 2019
    Publication date: March 11, 2021
    Applicant: Intel Corporation
    Inventors: Takao Oshita, Fabrice Paillet, Rinkle Jain, Jad Rizk, Danny Bronstein, Ahmad Arnaot
  • Publication number: 20200393861
    Abstract: Described is an apparatus which comprises: a plurality of transistors coupled to an input power supply and to a load; a first comparator with a first node coupled to the load, and a second node coupled to a first reference; a second comparator with a first node coupled to the load, and a second node coupled to a second reference, the second reference being different from the first reference; and a logic unit to receive output of the first comparator and output of the second comparator, the logic unit to turn on or off transistors of the plurality of transistors according to outputs of the first and second comparators.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 17, 2020
    Applicant: Intel Corporation
    Inventors: Yi-Chun Shih, Kaushik Mazumdar, Stephen T. Kim, Rinkle Jain, James W. Tschanz, Muhammad M. Khellah
  • Publication number: 20200395845
    Abstract: Disclosed is an N:1 (where N is an integer such as 3 or higher) resonant star topology converter to generate an input supply (e.g., 1.8V) for a processor (e.g., a system-on-chip (SOC)) from a higher power supply source (e.g., 12.6V) such as a battery or other source. The resonant star topology based regulator can be realized by a combination of on-die and on-package components as opposed to voltage regulators on motherboard with discrete inductor and capacitors. In one example, capacitors of the N:1 resonant star topology are implemented as multilayer ceramic capacitors (MLCC). The architecture of the N:1 resonant star topology based regulator results in high bandwidth. For example, compared to traditional step-down voltage regulators, the N:1 resonant star topology based regulator exhibits ten times higher bandwidth.
    Type: Application
    Filed: June 13, 2019
    Publication date: December 17, 2020
    Applicant: Intel Corporation
    Inventors: Rinkle Jain, Jonathan Douglas, Shivadarshan Rajeurs
  • Patent number: 10698432
    Abstract: Described is an apparatus which comprises: a plurality of transistors coupled to an input power supply and to a load; a first comparator with a first node coupled to the load, and a second node coupled to a first reference; a second comparator with a first node coupled to the load, and a second node coupled to a second reference, the second reference being different from the first reference; and a logic unit to receive output of the first comparator and output of the second comparator, the logic unit to turn on or off transistors of the plurality of transistors according to outputs of the first and second comparators.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 30, 2020
    Assignee: Intel Corporation
    Inventors: Yi-Chun Shih, Kaushik Mazumdar, Stephen T. Kim, Rinkle Jain, James W. Tschanz, Muhammad M. Khellah
  • Patent number: 9958922
    Abstract: Methods and apparatus relating to a low ripple mechanism of mode change in switched capacitor voltage regulators are described. In an embodiment, a mode change of a Switching Capacitor Voltage Regulator (SCVR) is caused based at least in part on a comparison of an output voltage of the SCVR and a reference voltage. The output voltage is sensed based at least in part on a clock signal. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: May 1, 2018
    Assignee: Intel Corporation
    Inventors: George E. Matthew, Rinkle Jain, Vaibhav Vaidya
  • Patent number: 9911689
    Abstract: Techniques are disclosed for forming a through-body-via (TBV) isolated coaxial capacitor in a semiconductor die. In some embodiments, a cylindrical capacitor provided using the disclosed techniques may include, for example, a conductive TBV surrounded by a dielectric material and an outer conductor plate. The TBV and outer plate can be formed, for example, so as to be self-aligned with one another in a coaxial arrangement, in accordance with some embodiments. The disclosed capacitor may extend through the body of a host die such that its terminals are accessible on the upper and/or lower surfaces thereof. Thus, in some cases, the host die can be electrically connected with another die to provide a die stack or other three-dimensional integrated circuit (3D IC), in accordance with some embodiments. In some instances, the disclosed capacitor can be utilized, for example, to provide integrated capacitance in a switched-capacitor voltage regulator (SCVR).
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: March 6, 2018
    Assignee: INTEL CORPORATION
    Inventors: Kevin J. Lee, Ruchir Saraswat, Uwe Zillmann, Nicholas P. Cowley, Andre Schaefer, Rinkle Jain, Guido Droege
  • Publication number: 20170242468
    Abstract: Methods and apparatus relating to a low ripple mechanism of mode change in switched capacitor voltage regulators are described. In an embodiment, a mode change of a Switching Capacitor Voltage Regulator (SCVR) is caused based at least in part on a comparison of an output voltage of the SCVR and a reference voltage. The output voltage is sensed based at least in part on a clock signal. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Applicant: Intel Corporation
    Inventors: George E. Matthew, Rinkle Jain, Vaibhav Vaidya
  • Patent number: 9680363
    Abstract: Methods and apparatus relating to a low ripple mechanism of mode change in switched capacitor voltage regulators are described. In an embodiment, a mode change of a Switching Capacitor Voltage Regulator (SCVR) is caused based at least in part on a comparison of an output voltage of the SCVR and a reference voltage. The output voltage is sensed based at least in part on a clock signal. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 13, 2017
    Assignee: Intel Corporation
    Inventors: George E. Matthew, Rinkle Jain, Vaibhav Vaidya
  • Publication number: 20170093270
    Abstract: Methods and apparatus relating to a low ripple mechanism of mode change in switched capacitor voltage regulators are described. In an embodiment, a mode change of a Switching Capacitor Voltage Regulator (SCVR) is caused based at least in part on a comparison of an output voltage of the SCVR and a reference voltage. The output voltage is sensed based at least in part on a clock signal. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Applicant: Intel Corporation
    Inventors: George E. Matthew, Rinkle Jain, Vaibhav Vaidya
  • Publication number: 20170040255
    Abstract: Techniques are disclosed for forming a through-body-via (TBV) isolated coaxial capacitor in a semiconductor die. In some embodiments, a cylindrical capacitor provided using the disclosed techniques may include, for example, a conductive TBV surrounded by a dielectric material and an outer conductor plate. The TBV and outer plate can be formed, for example, so as to be self-aligned with one another in a coaxial arrangement, in accordance with some embodiments. The disclosed capacitor may extend through the body of a host die such that its terminals are accessible on the upper and/or lower surfaces thereof. Thus, in some cases, the host die can be electrically connected with another die to provide a die stack or other three-dimensional integrated circuit (3D IC), in accordance with some embodiments. In some instances, the disclosed capacitor can be utilized, for example, to provide integrated capacitance in a switched-capacitor voltage regulator (SCVR).
    Type: Application
    Filed: December 23, 2013
    Publication date: February 9, 2017
    Applicant: INTEL CORPORATION
    Inventors: KEVIN J. LEE, RUCHIR SARASWAT, UWE ZILLMANN, NICHOLAS P. COWLEY, ANDRE SCHAEFER, RINKLE JAIN, GUIDO DROEGE
  • Publication number: 20160231761
    Abstract: Described is an apparatus comprising: an output stage having an input supply node to receive an input power supply and an output node to provide an output supply to a load; an amplifier to control current strength of the output stage according to the output supply and a reference voltage; and a hysteresis unit to monitor the output supply and operable to control the current strength of the output stage according to a voltage level of the output supply. Described is another apparatus which comprises: a plurality of charge pumps to adjust current strength of the output stage; and a logic unit to monitor the output supply and operable to control the plurality of charge pumps according to a voltage level of the output supply and one or more reference voltages.
    Type: Application
    Filed: April 19, 2016
    Publication date: August 11, 2016
    Inventors: Rinkle Jain, Yi-Chun Shih, Vaibhav Vaidya
  • Patent number: 9323263
    Abstract: An output stage has an input supply node to receive an input power supply and an output node to provide an output supply to a load. An amplifier is used to control current strength of the output stage according to the output supply and a reference voltage. A hysteresis unit is used to monitor the output supply and operable to control the current strength of the output stage according to a voltage level of the output supply. In one embodiment, a plurality of charge pumps are used to adjust current strength of the output stage. A logic unit is used to monitor the output supply and operable to control the plurality of charge pumps according to a voltage level of the output supply and one or more reference voltages.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: April 26, 2016
    Assignee: Intel Corporation
    Inventors: Rinkle Jain, Yi-Chun Shih, Vaibhav Vaidya