Patents by Inventor Rintaro Ishii

Rintaro Ishii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961771
    Abstract: There is provided a laminated sheet with which the electrical inspection of a redistribution layer formed later can be efficiently performed, while the laminated sheet is in the form of a sheet useful for the formation of a redistribution layer. This laminated sheet includes a carrier with a release function; a first electrically conductive film provided on the carrier with the release function; an insulating film provided on the first electrically conductive film; and a second electrically conductive film provided on the insulating film. The second electrically conductive film is used for formation of a redistribution layer, and the first electrically conductive film, the insulating film, and the second electrically conductive film function as a capacitor for performing electrical inspection of the redistribution layer.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: April 16, 2024
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshinori Matsuura, Takenori Yanai, Rintaro Ishii
  • Patent number: 11765840
    Abstract: An extremely thin copper foil with a carrier is provided that can keep stable releasability even after being heated for a prolonged time at a high temperature of 350° C. or more. The extremely thin copper foil with a carrier includes a carrier composed of a glass or ceramic material; an intermediate layer provided on the carrier and composed of at least one metal selected from the group consisting of Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga, and Mo; a release layer provided on the intermediate layer and including a carbon sublayer and a metal oxide sublayer or containing metal oxide and carbon; and an extremely thin copper layer provided on the release layer.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 19, 2023
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Rintaro Ishii, Takenori Yanai, Yoshinori Matsuura
  • Patent number: 11642870
    Abstract: A glass carrier-attached copper foil is provided that is suitable for production of a desired circuit mounting board ensuring electric conduction over the entire copper layer, reducing separation of the copper layer at the cut edge even if the copper foil is downsized, and having an intended circuit pattern with a fine pitch. The glass carrier-attached copper foil includes a glass carrier, a release layer provided on the glass carrier, and a copper layer provided on the release layer. The release layer has a function to enable release of the copper layer from the glass carrier. The glass carrier-attached copper foil has a plurality of releasable regions including the release layer and an unreleasable region not including the release layer. The unreleasable region has a pattern defining the releasable regions.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: May 9, 2023
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventor: Rintaro Ishii
  • Patent number: 11637358
    Abstract: Provided is a carrier-attached metal foil which has excellent carrier-releasability and excellent selective metal layer-etchability, and can achieve a reduction in transmission loss and resistance in a semiconductor package (for example, a millimeter-wave antenna substrate) manufactured using the same. The carrier-attached metal foil includes: (a) a carrier; (b) a release functional layer on the carrier and including (b1) an adhesion layer disposed closer to the carrier and having a thickness of more than 10 nm and less than 200 nm and (b2) a release assistance layer disposed farther from the carrier and having a thickness of 50 nm or more and 500 nm or less; and (c) a composite metal layer on the release functional layer and including (c1) a carbon layer disposed closer to the release assistance layer, and (c2) a first metal layer disposed farther from the release assistance layer and mainly composed of Au or Pt.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: April 25, 2023
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Mikiko Komiya, Takenori Yanai, Rintaro Ishii, Yoshinori Matsuura
  • Publication number: 20230072120
    Abstract: Provided is a carrier-attached metal foil which can suppress the number of foreign matter particles on the surface of a metal layer to enhance circuit formability, and can keep stable releasability even after heating at a high temperature of 240° C. or higher (for example, 260° C.) for a long period of time. The carrier-attached metal foil includes a carrier, a release functional layer provided on the carrier, the release functional layer including a metal oxynitride, and a metal layer provided on the release functional layer.
    Type: Application
    Filed: January 21, 2021
    Publication date: March 9, 2023
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yukiko KITABATAKE, Masahiro KOIDE, Rintaro ISHII, Yoshinori MATSUURA
  • Publication number: 20220022326
    Abstract: There is provided a laminate in which a decrease in the release function of a release layer can be suppressed even when the laminate is heat-treated under either temperature condition of low temperature and high temperature. This laminate includes a carrier; an adhesion layer on the carrier and containing a metal M1 having a negative standard electrode potential; a release-assisting layer on a surface of the adhesion layer opposite to the carrier and containing a metal M2 (M2 is a metal other than an alkali metal and an alkaline earth metal); a release layer on a surface of the release-assisting layer opposite to the adhesion layer; and a metal layer on a surface of the release layer opposite to the release-assisting layer, and T2/T1, a ratio of a thickness of the release-assisting layer, T2, to a thickness of the adhesion layer, T1, is more than 1 and 20 or less.
    Type: Application
    Filed: November 14, 2019
    Publication date: January 20, 2022
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Rintaro ISHII, Takenori YANAI, Yoshinori MATSUURA
  • Publication number: 20210328325
    Abstract: Provided is a carrier-attached metal foil which has excellent carrier-releasability and excellent selective metal layer-etchability, and can achieve a reduction in transmission loss and resistance in a semiconductor package (for example, a millimeter-wave antenna substrate) manufactured using the same. The carrier-attached metal foil includes: (a) a carrier; (b) a release functional layer on the carrier and including (b1) an adhesion layer disposed closer to the carrier and having a thickness of more than 10 nm and less than 200 nm and (b2) a release assistance layer disposed farther from the carrier and having a thickness of 50 nm or more and 500 nm or less; and (c) a composite metal layer on the release functional layer and including (c1) a carbon layer disposed closer to the release assistance layer, and (c2) a first metal layer disposed farther from the release assistance layer and mainly composed of Au or Pt.
    Type: Application
    Filed: November 19, 2019
    Publication date: October 21, 2021
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Mikiko KOMIYA, Takenori YANAI, Rintaro ISHII, Yoshinori MATSUURA
  • Publication number: 20210313237
    Abstract: There is provided a laminated sheet with which the electrical inspection of a redistribution layer formed later can be efficiently performed, while the laminated sheet is in the form of a sheet useful for the formation of a redistribution layer. This laminated sheet includes a carrier with a release function; a first electrically conductive film provided on the carrier with the release function; an insulating film provided on the first electrically conductive film; and a second electrically conductive film provided on the insulating film. The second electrically conductive film is used for formation of a redistribution layer, and the first electrically conductive film, the insulating film, and the second electrically conductive film function as a capacitor for performing electrical inspection of the redistribution layer.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshinori MATSUURA, Takenori YANAI, Rintaro ISHII
  • Publication number: 20210274650
    Abstract: There is provided a laminate that can suppress the warpage of a laminated product when used for the manufacture of the laminated product. This laminate includes a float glass substrate having a top surface and a bottom surface; and a metal layer provided on the top surface side of the float glass substrate.
    Type: Application
    Filed: May 11, 2021
    Publication date: September 2, 2021
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Rintaro ISHII, Toshimi NAKAMURA, Yoshinori MATSUURA
  • Publication number: 20210059057
    Abstract: An extremely thin copper foil with a carrier is provided that can keep stable releasability even after being heated for a prolonged time at a high temperature of 350° C. or more. The extremely thin copper foil with a carrier includes a carrier composed of a glass or ceramic material; an intermediate layer provided on the carrier and composed of at least one metal selected from the group consisting of Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga, and Mo; a release layer provided on the intermediate layer and including a carbon sublayer and a metal oxide sublayer or containing metal oxide and carbon; and an extremely thin copper layer provided on the release layer.
    Type: Application
    Filed: December 3, 2018
    Publication date: February 25, 2021
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Rintaro ISHII, Takenori YANAI, Yoshinori MATSUURA
  • Patent number: 10923256
    Abstract: To provide an R-T-B based sintered magnet including R: 27.5 to 34.0% by mass, RH: 2 to 10% by mass, B: 0.89 to 0.95% by mass, Ti: 0.1 to 0.2% by mass, Ga: 0.3 to 0.7% by mass, Cu: 0.07 to 0.50% by mass, Al: 0.05 to 0.50% by mass, M (M is Nb and/or Zr): 0 to 0.3% by mass, balance T, and inevitable impurities, the following inequality expressions (1), (2), and (3) being satisfied: [T]?72.3([B]?0.45[Ti])>0??(1) ([T]?72.3([B]?0.45[Ti]))/55.85<13[Ga]/69.72??(2) [Ga]?[Cu]??(3).
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: February 16, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Teppei Satoh, Futoshi Kuniyoshi, Rintaro Ishii, Takeshi Nishiuchi, Noriyuki Nozawa
  • Publication number: 20210008838
    Abstract: A glass carrier-attached copper foil is provided that is suitable for production of a desired circuit mounting board ensuring electric conduction over the entire copper layer, reducing separation of the copper layer at the cut edge even if the copper foil is downsized, and having an intended circuit pattern with a fine pitch. The glass carrier-attached copper foil includes a glass carrier, a release layer provided on the glass carrier, and a copper layer provided on the release layer. The release layer has a function to enable release of the copper layer from the glass carrier. The glass carrier-attached copper foil has a plurality of releasable regions including the release layer and an unreleasable region not including the release layer. The unreleasable region has a pattern defining the releasable regions.
    Type: Application
    Filed: March 18, 2019
    Publication date: January 14, 2021
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventor: Rintaro ISHII
  • Patent number: 10847290
    Abstract: To provide an R-T-B based sintered magnet having high Br and high HcJ while suppressing the content of Dy. Disclosed is an R-T-B based sintered magnet represented by the formula: uRwBxGayCuzAlqM(balance)T, where R is composed of light rare-earth element(s) RL and heavy rare-earth element(s) RH, RL is Nd and/or Pr, RH is Dy and/or Tb, T is Fe, and 10% by mass or less of Fe is capable of being replaced with Co, M is Nb and/or Zr, inevitable impurities being included, and u, w, x, y, z and q are expressed in terms of % by mass; RH accounts for 5% by mass or less of the R-T-B based sintered magnet, 0.4?x?1.0, 0.07?y?1.0, 0.05?z?0.5, 0?q?0.1, and 0.100?y/(x+y)?0.340; v=u?(6?+10?+8?), where the amount of oxygen (% by mass) is ?, the amount of nitrogen (% by mass) is ?, and the amount of carbon (% by mass) is ?; and v and w satisfy the following inequality expressions: v?32.0, 0.84?w?0.93, and ?12.5w+38.75?v??62.5w+86.125.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: November 24, 2020
    Assignee: HITACHI METALS, LTD.
    Inventors: Takeshi Nishiuchi, Takayuki Kanda, Rintaro Ishii, Futoshi Kuniyoshi, Teppei Satoh
  • Patent number: 10727493
    Abstract: In order to provide a novel oriented apatite-type oxide ion conductor which can achieve an increase in area through suppression of crack generation and preferably can be manufactured more inexpensively by an uncomplicated process, an oriented apatite-type oxide ion conductor composed of a composite oxide represented by A9.33+x[T6?yMy]O26.00+z A in the formula is one kind or two or more kinds of elements selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca, Sr, and Ba. T in the formula is an element including Si, Ge, or both of them. M in the formula is one kind or two or more kinds of elements selected from the group consisting of B, Ge, Zn, Sn, W, and Mo.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: July 28, 2020
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Shingo Ide, Yuichi Anno, Yasuhisa Izutsu, Jun Omura, Rintaro Ishii, Minoru Kahata
  • Patent number: 10658108
    Abstract: Disclosed is a method for producing a magnet, including a step of preparing a magnet represented by the formula: uRwBxGayCuzAlqM(balance)T, where RH is 5% or less, 0.20?x?0.70, 0.07?y?0.2, 0.05?z?0.5, 0?q?0.1; when 0.40?x?0.70, v and w satisfy the following inequality expressions: 50w?18.5?v?50w?14, and ?12.5w+38.75?v??62.5w+86.125; and, when 0.20?x?0.40, v and w satisfy the following inequality expressions: 50w?18.5?v?50w?15.5 and ?12.5w+39.125?v??62.5w+86.125, and x satisfy the following inequality expression: ?(62.5w+v ?81.625)/15+0.5?x??(62.5w+v?81.625)/15+0.8; a high-temperature heat treatment step of heating the magnet to a temperature of 730° C. or higher and 1,020° C. or lower, and then cooling to 300° C. at a cooling rate of 20° C./min; and a low-temperature heat treatment step of heating the magnet to a temperature of 440° C. or higher and 550° C. or lower.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: May 19, 2020
    Assignee: HITACHI METALS, LTD.
    Inventors: Ryouichi Yamagata, Rintaro Ishii, Futoshi Kuniyoshi, Teppei Satoh
  • Patent number: 10446306
    Abstract: A method for manufacturing an R-T-B based sintered magnet includes: 1) a step of preparing an R-T-B based sintered magnet material by sintering a molded body, the sintered magnet material having a particular composition and satisfying inequality expressions (1) and (2); 2) a high-temperature heat treatment step of heating the sintered magnet material to a heating temperature of 730° C. to 1,020° C. and then cooling the sintered magnet material to 300° C. at a cooling rate of 5° C./min or more; and 3) a low-temperature heat treatment step of heating the sintered magnet material after the high-temperature heat treatment step to 440° C. to 550° C.: [T]?72.3[B]>0??(1) ([T]?72.3[B])/55.85<13[Ga]/69.72??(2) where [T] is a T content in percent by mass, [B] is a B content in percent by mass, and [Ga] is a Ga content in percent by mass.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: October 15, 2019
    Assignee: HITACHI METALS, LTD.
    Inventors: Teppei Satoh, Futoshi Kuniyoshi, Rintaro Ishii, Ryouichi Yamagata
  • Patent number: 10388442
    Abstract: To provide an R-T-B based sintered magnet having high Br and high HcJ while suppressing the content of Dy, and a method for producing the same. Disclosed is an R-T-B based sintered magnet represented by the formula: uRwBxGayCuzAlqMT, where 0.20?x?0.70, 0.07?y?0.2, 0.05?z?0.5, 0?q?0.1; v=u?(6?+10?+8?), where the amount of oxygen (% by mass) is ?, the amount of nitrogen (% by mass) is ?, and the amount of carbon (% by mass) is ?; when 0.40?x?0.70, v and w satisfy the following inequality expressions: 50w?18.5?v?50w?14, and ?12.5w+38.75?v??62.5w+86.125; and, when 0.20?x?0.40, v and w satisfy the following inequality expressions: 50w?18.5?v?50w?15.5 and ?12.5w+39.125?v??62.5w+86.125, and x satisfy the following inequality expression: ?(62.5w+v?81.625)/15+0.5?x??(62.5w+v?81.625)/15+0.8.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: August 20, 2019
    Assignee: HITACHI METALS, LTD.
    Inventors: Rintaro Ishii, Futoshi Kuniyoshi, Teppei Satoh
  • Patent number: 10242781
    Abstract: A method for manufacturing an R-T-B based sintered magnet includes: 1) a step of preparing an R-T-B based sintered magnet material by sintering a molded body at a temperature of 1,000° C. or higher and 1,100° C. or lower, and then performing (a) temperature dropping to 500° C. at 10° C./min or less, or (b) temperature dropping to 500° C. at 10° C./min or less after performing a first heat treatment of holding at a first heat treatment temperature of 800° C. or higher and 950° C. or lower, the R-T-B based sintered magnet material satisfying compositional requirements; and 2) a heat treatment step of performing a second heat treatment by heating the R-T-B based sintered magnet material to a second heat treatment temperature of 650° C. or higher and 750° C. or lower, and then cooling the R-T-B based sintered magnet material to 400° C. at 5° C./min or more.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: March 26, 2019
    Assignee: HITACHI METALS, LTD.
    Inventors: Teppei Satoh, Futoshi Kuniyoshi, Rintaro Ishii
  • Patent number: 10020100
    Abstract: A method is provided for producing an R-T-B based alloy powder. The method includes providing an alloy powder containing 27.5 to 36.0 mass % of R, where R is at least one among the rare-earth elements and always includes at least one of Nd and Pr, 0.85 to 1.05 mass % of B, 0.1 to 2.5 mass % of element M (Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb and/or Bi), and a balance T, where T is Fe or is Fe and Co; and pulverizing the powder by introducing the powder and a pulverization gas in a pulverization chamber. The pulverization includes attrition while circulating the alloy powder with a flow of the pulverization gas in the pulverization chamber. The pulverization gas has a gauge pressure of 0.75 MPa or more, and the residence time is 6 minutes or more.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: July 10, 2018
    Assignee: HITACHI METALS, LTD.
    Inventor: Rintaro Ishii
  • Publication number: 20180183068
    Abstract: In order to provide a novel oriented apatite-type oxide ion conductor which can achieve an increase in area through suppression of crack generation and preferably can be manufactured more inexpensively by an uncomplicated process, an oriented apatite-type oxide ion conductor composed of a composite oxide represented by A9.33+x[T6?yMy]O26.00+z A in the formula is one kind or two or more kinds of elements selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca, Sr, and Ba. T in the formula is an element including Si, Ge, or both of them. M in the formula is one kind or two or more kinds of elements selected from the group consisting of B, Ge, Zn, Sn, W, and Mo.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 28, 2018
    Inventors: Shingo Ide, Yuichi Anno, Yasuhisa Izutsu, Jun Omura, Rintaro Ishii, Minoru Kahata