Patents by Inventor Rinus LEE

Rinus LEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11545574
    Abstract: Structures for a single diffusion break and methods of forming a structure for a single diffusion break. A cut is formed in a semiconductor fin. A single diffusion break includes a first dielectric layer in the cut and a second dielectric layer over the first dielectric layer. The first dielectric layer is comprised of a first material, and the second dielectric layer is comprised of a second material having a different composition than the first material. The second dielectric layer includes a first portion over the first dielectric layer and a second portion over the first portion. The first portion of the second dielectric layer has a first horizontal dimension, and the second portion of the second dielectric layer has a second horizontal dimension that is greater than the first horizontal dimension.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: January 3, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Haiting Wang, Rinus Lee, Sipeng Gu, Yue Hu
  • Publication number: 20220052193
    Abstract: Structures for a single diffusion break and methods of forming a structure for a single diffusion break. A cut is formed in a semiconductor fin. A single diffusion break includes a first dielectric layer in the cut and a second dielectric layer over the first dielectric layer. The first dielectric layer is comprised of a first material, and the second dielectric layer is comprised of a second material having a different composition than the first material. The second dielectric layer includes a first portion over the first dielectric layer and a second portion over the first portion. The first portion of the second dielectric layer has a first horizontal dimension, and the second portion of the second dielectric layer has a second horizontal dimension that is greater than the first horizontal dimension.
    Type: Application
    Filed: August 17, 2020
    Publication date: February 17, 2022
    Inventors: Haiting Wang, Rinus Lee, Sipeng Gu, Yue Hu
  • Patent number: 10886178
    Abstract: A device including a triple-layer EPI stack including SiGe, Ge, and Si, respectively, with Ga confined therein, and method of production thereof. Embodiments include an EPI stack including a SiGe layer, a Ge layer, and a Si layer over a plurality of fins, the EPI stack positioned between and over a portion of sidewall spacers, wherein the Si layer is a top layer capping the Ge layer, and wherein the Ge layer is a middle layer capping the SiGe layer underneath; and a Ga layer in a portion of the Ge layer between the SiGe layer and the Si layer.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: January 5, 2021
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Tek Po Rinus Lee, Annie Levesque, Qun Gao, Hui Zang, Rishikesh Krishnan, Bharat Krishnan, Curtis Durfee
  • Patent number: 10872979
    Abstract: An integrated circuit product is disclosed that includes a transistor device that includes a final gate structure, a gate cap, a low-k sidewall spacer positioned on and in contact with opposing sidewalls of the final gate structure, first and second contact etch stop layers (CESLs) located on opposite sides of the final gate structure, whereby the CESLs are positioned on and in contact with the low-k sidewall spacer, and a high-k spacer located on opposite sides of the final gate structure, wherein the high-k spacer is positioned in recesses formed in an upper portion of the CESLs.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: December 22, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hui Zang, Chung Foong Tan, Guowei Xu, Haiting Wang, Yue Zhong, Ruilong Xie, Tek Po Rinus Lee, Scott Beasor
  • Publication number: 20200168731
    Abstract: An integrated circuit product is disclosed that includes a transistor device that includes a final gate structure, a gate cap, a low-k sidewall spacer positioned on and in contact with opposing sidewalls of the final gate structure, first and second contact etch stop layers (CESLs) located on opposite sides of the final gate structure, whereby the CESLs are positioned on and in contact with the low-k sidewall spacer, and a high-k spacer located on opposite sides of the final gate structure, wherein the high-k spacer is positioned in recesses formed in an upper portion of the CESLs.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventors: Hui Zang, Chung Foong Tan, Guowei Xu, Haiting Wang, Yue Zhong, Ruilong Xie, Tek Po Rinus Lee, Scott Beasor
  • Patent number: 10629739
    Abstract: One illustrative method disclosed herein includes forming a low-k sidewall spacer adjacent opposing sidewalls of a gate structure, forming contact etch stop layers (CESLs) adjacent the low-k sidewall spacer in the source/drain regions of the transistor, and forming a first insulating material above the CESLs. In this example, the method also includes recessing the first insulating material so as to expose substantially vertically oriented portions of the CESLs, removing a portion of a lateral width of the substantially vertically oriented portions of the CESLs so as to form trimmed CESLs, and forming a high-k spacer on opposite sides of the gate structure, wherein at least a portion of the high-k spacer is positioned laterally adjacent the trimmed substantially vertically oriented portions of the trimmed CESLs.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: April 21, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hui Zang, Chung Foong Tan, Guowei Xu, Haiting Wang, Yue Zhong, Ruilong Xie, Tek Po Rinus Lee, Scott Beasor
  • Publication number: 20200066593
    Abstract: A device including a triple-layer EPI stack including SiGe, Ge, and Si, respectively, with Ga confined therein, and method of production thereof. Embodiments include an EPI stack including a SiGe layer, a Ge layer, and a Si layer over a plurality of fins, the EPI stack positioned between and over a portion of sidewall spacers, wherein the Si layer is a top layer capping the Ge layer, and wherein the Ge layer is a middle layer capping the SiGe layer underneath; and a Ga layer in a portion of the Ge layer between the SiGe layer and the Si layer.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 27, 2020
    Inventors: Tek Po Rinus LEE, Annie LEVESQUE, Qun GAO, Hui ZANG, Rishikesh KRISHNAN, Bharat KRISHNAN, Curtis DURFEE
  • Publication number: 20200027979
    Abstract: One illustrative method disclosed herein includes forming a low-k sidewall spacer adjacent opposing sidewalls of a gate structure, forming contact etch stop layers (CESLs) adjacent the low-k sidewall spacer in the source/drain regions of the transistor, and forming a first insulating material above the CESLs. In this example, the method also includes recessing the first insulating material so as to expose substantially vertically oriented portions of the CESLs, removing a portion of a lateral width of the substantially vertically oriented portions of the CESLs so as to form trimmed CESLs, and forming a high-k spacer on opposite sides of the gate structure, wherein at least a portion of the high-k spacer is positioned laterally adjacent the trimmed substantially vertically oriented portions of the trimmed CESLs.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 23, 2020
    Inventors: Hui Zang, Chung Foong Tan, Guowei Xu, Haiting Wang, Yue Zhong, Ruilong Xie, Tek Po Rinus Lee, Scott Beasor
  • Patent number: 10276683
    Abstract: Methods for forming a semiconductor device having dual Schottky barrier heights using a single metal and the resulting device are provided. Embodiments include a semiconductor substrate having an n-FET region and a p-FET region each having source/drain regions; a titanium silicon (Ti—Si) intermix phase Ti liner on an upper surface of the n-FET region source/drain regions; and titanium silicide (TiSi) forming an upper surface of the p-FET region source/drain regions.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 30, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Tek Po Rinus Lee, Jinping Liu, Ruilong Xie
  • Patent number: 10263122
    Abstract: A method, apparatus, and manufacturing system are disclosed herein for a vertical field effect transistor including a gate contact patterned in a self-aligned process. In one embodiment, we disclose a semiconductor device, including a semiconductor substrate and a first vertical field effect transistor (vFET) including a bottom source/drain (S/D) region disposed on the semiconductor substrate; a fin disposed above the bottom S/D region; a top source/drain (S/D) region disposed above the fin and having a top surface; and a gate having a top surface higher than the top surface of the top S/D region. A gate contact may be formed over the gate.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 16, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui Zang, Ruilong Xie, Tek Po Rinus Lee, Lars Liebmann
  • Patent number: 10242982
    Abstract: A method includes forming a first plurality of gate structures. A second plurality of gate structures is formed. A first spacer is formed on each of the first and second pluralities of gate structures. A first cavity is defined between the first spacers of a first pair of the first plurality of gate structures. A second cavity is defined between the first spacers of a second pair of the second plurality of gate structures. A second spacer is selectively formed in the second cavity on the first spacer of each of the gate structures of the second pair without forming the second spacer in the first cavity. A first contact is formed contacting the first spacers in the first cavity. A second contact is formed contacting the second spacers in the second cavity.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: March 26, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Katsunori Onishi, Tek Po Rinus Lee
  • Patent number: 10230000
    Abstract: Methods and structures that include a vertical-transport field-effect transistor. A semiconductor fin is formed that projects from a first source/drain region. A second source/drain region is spaced vertically along the semiconductor fin from the first source/drain region. A gate stack is arranged between the second source/drain region and the first source/drain region. A spacer is formed adjacent to a sidewall of the second source/drain region. A first contact is connected with a top surface of the second source/drain region, a second contact is connected with a top surface of the first source/drain region, and a third contact is connected with a top surface of the gate stack. The spacer is arranged between the second source/drain region and the second contact or between the second source/drain region and the third contact.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: March 12, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Emilie Bourjot, Daniel Chanemougame, Tek Po Rinus Lee, Ruilong Xie, Hui Zang
  • Publication number: 20190051757
    Abstract: Methods and structures that include a vertical-transport field-effect transistor. A semiconductor fin is formed that projects from a first source/drain region. A second source/drain region is spaced vertically along the semiconductor fin from the first source/drain region. A gate stack is arranged between the second source/drain region and the first source/drain region. A spacer is formed adjacent to a sidewall of the second source/drain region. A first contact is connected with a top surface of the second source/drain region, a second contact is connected with a top surface of the first source/drain region, and a third contact is connected with a top surface of the gate stack. The spacer is arranged between the second source/drain region and the second contact or between the second source/drain region and the third contact.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: Emilie Bourjot, Daniel Chanemougame, Tek Po Rinus Lee, Ruilong Xie, Hui Zang
  • Patent number: 10170544
    Abstract: An integrated circuit product includes a FinFET device, a device isolation region that is positioned around a perimeter of the FinFET device, and an isolation protection layer that is positioned above the device isolation region. The FinFET device includes at least one fin, a gate structure, and a sidewall spacer, the device isolation region includes a first insulating material, and the isolation protection layer includes a material that is different from the first insulating material. A first portion of the isolation protection layer is positioned under a portion of the gate structure and under a portion of the sidewall spacer, wherein a second portion of the isolation protection layer is not positioned under the gate structure and is not positioned under the sidewall spacer, the first portion of the isolation protection layer having a thickness that is greater than a thickness of the second portion.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: January 1, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Christopher M. Prindle, Min Gyu Sung, Tek Po Rinus Lee
  • Patent number: 10109714
    Abstract: Structures including a vertical field-effect transistor and fabrication methods for a structure including a vertical field-effect transistor. A vertical field-effect transistor includes a source/drain region located in a section of a semiconductor layer, a first semiconductor fin projecting from the source/drain region, a second semiconductor fin projecting from the source/drain region, and a gate electrode on the section of the semiconductor layer and coupled with the first semiconductor fin and with the second semiconductor fin. The structure further includes a contact located in a trench defined in the section of the semiconductor layer between the first semiconductor fin and the second semiconductor fin. The contact is coupled with the source/drain region of the vertical field-effect transistor.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: October 23, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hui Zang, Tek Po Rinus Lee
  • Patent number: 10103238
    Abstract: Methods for forming a structure for a nanosheet field-effect transistor. A body feature is formed that includes a plurality of nanosheet channel layers and a plurality of first sacrificial layers that are alternatingly arranged with the nanosheet channel layers. The body feature is located on a second sacrificial layer. The first sacrificial layers are recessed relative to the nanosheet channel layers to form a plurality of first cavities indented into a sidewall of the body feature. A plurality of dielectric spacers are formed that fill the first cavities. After forming the dielectric spacers, the second sacrificial layer is removed with an etching process to define a second cavity that extends completely beneath the body feature. A dielectric layer is formed in the second cavity.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 16, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hui Zang, Tek Po Rinus Lee, Haigou Huang, Ruilong Xie, Min Gyu Sung, Chanro Park
  • Publication number: 20180261595
    Abstract: A method includes forming a first plurality of gate structures. A second plurality of gate structures is formed. A first spacer is formed on each of the first and second pluralities of gate structures. A first cavity is defined between the first spacers of a first pair of the first plurality of gate structures. A second cavity is defined between the first spacers of a second pair of the second plurality of gate structures. A second spacer is selectively formed in the second cavity on the first spacer of each of the gate structures of the second pair without forming the second spacer in the first cavity. A first contact is formed contacting the first spacers in the first cavity. A second contact is formed contacting the second spacers in the second cavity.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 13, 2018
    Inventors: Ruilong Xie, Katsunori Onishi, Tek Po Rinus Lee
  • Publication number: 20180254327
    Abstract: Structures including a vertical field-effect transistor and fabrication methods for a structure including a vertical field-effect transistor. A vertical field-effect transistor includes a source/drain region located in a section of a semiconductor layer, a first semiconductor fin projecting from the source/drain region, a second semiconductor fin projecting from the source/drain region, and a gate electrode on the section of the semiconductor layer and coupled with the first semiconductor fin and with the second semiconductor fin. The structure further includes a contact located in a trench defined in the section of the semiconductor layer between the first semiconductor fin and the second semiconductor fin. The contact is coupled with the source/drain region of the vertical field-effect transistor.
    Type: Application
    Filed: September 1, 2017
    Publication date: September 6, 2018
    Inventors: Hui Zang, Tek Po Rinus Lee
  • Publication number: 20180138177
    Abstract: Formation of band-edge contacts include, for example, providing an intermediate semiconductor structure comprising a substrate and a gate thereon and source/drain regions adjacent the gate, depositing a non-epitaxial layer on the source/drain regions, deposing a metal layer on the non-epitaxial layer, and forming metal alloy contacts from the deposited non-epitaxial layer and metal layer on the source/drain regions by annealing the deposited non-epitaxial layer and metal layer.
    Type: Application
    Filed: November 16, 2016
    Publication date: May 17, 2018
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Tek Po Rinus LEE, Bharat KRISHNAN, Jinping LIU, Hui ZANG, Judson Robert HOLT
  • Publication number: 20180102409
    Abstract: An integrated circuit product includes a FinFET device, a device isolation region that is positioned around a perimeter of the FinFET device, and an isolation protection layer that is positioned above the device isolation region. The FinFET device includes at least one fin, a gate structure, and a sidewall spacer, the device isolation region includes a first insulating material, and the isolation protection layer includes a material that is different from the first insulating material. A first portion of the isolation protection layer is positioned under a portion of the gate structure and under a portion of the sidewall spacer, wherein a second portion of the isolation protection layer is not positioned under the gate structure and is not positioned under the sidewall spacer, the first portion of the isolation protection layer having a thickness that is greater than a thickness of the second portion.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 12, 2018
    Inventors: Ruilong Xie, Christopher M. Prindle, Min Gyu Sung, Tek Po Rinus Lee