Patents by Inventor Rishabh Shetty

Rishabh Shetty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118274
    Abstract: Provided herein are structures and methods for detecting one or more analyte molecules present in a sample. In some embodiments, the one or more analyte molecules are detected using one or more supramolecular structures. In some embodiments, the supramolecular structures are configured to form a linkage with a particular capture barcode, which is configured to form a linkage with a particular capture molecule. In some embodiments the capture molecule is configured to interact with a particular analyte molecule. In some embodiments, the locations of supramolecular structures are mapped on a substrate having a plurality of binding locations, according to the capture barcode and/or another barcode linked with the supramolecular structures. In some embodiments, the linkage between the analyte molecules and supramolecular structures enable a signal to be generated.
    Type: Application
    Filed: February 22, 2022
    Publication date: April 11, 2024
    Inventors: Ashwin GOPINATH, Paul ROTHEMUND, Rishabh SHETTY, Shane BOWEN, Rachel GALIMIDI
  • Publication number: 20240027433
    Abstract: Provided herein are structures and methods for detecting one or more analyte molecules present in a sample. In some embodiments, the one or more analyte molecules are detected using one or more supramolecular structures. In some embodiments, the one or more supramolecular structures are specifically designed to minimize cross-reactivity with each other. In some embodiments, the supramolecular structures are bi-stable, wherein the supramolecular structures shift from an unstable state to a stable state through interaction with one or more analyte molecules from the sample. In some embodiments, the stable state supramolecular structures are configured to provide a signal for analyte molecule detection and quantification. In some embodiments, the signal correlates to a DNA signal, such that detection and quantification of an analyte molecule comprises converting the presence of the analyte molecule into a DNA signal.
    Type: Application
    Filed: September 14, 2021
    Publication date: January 25, 2024
    Inventors: Ashwin GOPINATH, Paul ROTHEMUND, Rishabh SHETTY, Shane BOWEN
  • Publication number: 20220381777
    Abstract: Provided herein are structures and methods for detecting one or more analyte molecules present in a sample. In some embodiments, the one or more analyte molecules form a complex in solution with a supramolecular structure. The supramolecular structures of the complex may be detectable such that binding of the analyte molecule to a binding site of an array is detectable via one or more features of the supramolecular structure. A binding site of an array includes capture molecules to capture bound complexes to facilitate detection.
    Type: Application
    Filed: May 26, 2022
    Publication date: December 1, 2022
    Inventors: Ashwin Gopinath, Paul Rothemund, Rishabh Shetty, Shane Bowen, Rachel Galimidi, Dajun Yuan
  • Publication number: 20220268768
    Abstract: Provided herein are structures and methods for detecting one or more analyte molecules present in a sample. In some embodiments, the one or more analyte molecules are detected using one or more supramolecular structures. In some embodiments, the supramolecular structures facilitate binding of a single detector molecule. In some embodiments, the stable state supramolecular structures are configured to provide a signal for analyte molecule detection and quantification. In some embodiments, the signal correlates to a DNA signal, such that detection and quantification of an analyte molecule comprises converting the presence of the analyte molecule into a DNA signal.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 25, 2022
    Inventors: Ashwin Gopinath, Paul Rothemund, Rishabh Shetty, Shane Bowen, Rachel Galimidi
  • Publication number: 20220170918
    Abstract: Provided herein are structures and methods for detecting one or more analyte molecules present in a sample. In some embodiments, the one or more analyte molecules are detected using one or more supramolecular structures that are coupled to a substrate, e.g., a solid support. In some embodiments, the supramolecular structures are bi-stable, wherein the supramolecular structures transition from an unstable state to a stable state through interaction with one or more analyte molecules from the sample. In some embodiments, the stable state supramolecular structures are configured to provide a signal for analyte molecule detection and quantification.
    Type: Application
    Filed: November 29, 2021
    Publication date: June 2, 2022
    Inventors: Ashwin Gopinath, Paul Rothemund, Rishabh Shetty, Shane Bowen
  • Patent number: 11327004
    Abstract: Systems and methods of using the same for functional fluorescence imaging of live cells in suspension with isotropic three dimensional (3D) diffraction-limited spatial resolution are disclosed. The method-live cell computed tomography (LCCT)-involves the acquisition of a series of two dimensional (2D) pseudo-projection images from different perspectives of the cell that rotates around an axis that is perpendicular to the optical axis of the imaging system. The volumetric image of the cell is then tomographically reconstructed.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: May 10, 2022
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Deirdre Meldrum, Roger Johnson, Laimonas Kelbauskas, Jeff Houkal, Brian Ashcroft, Dean Smith, Hong Wang, Shih-Hui Joseph Chao, Rishabh Shetty, Jakrey Myers, Iniyan Soundappa Elango
  • Patent number: 11315292
    Abstract: Systems and methods of using the same for functional fluorescence imaging of live cells in suspension with isotropic three dimensional (3D) diffraction-limited spatial resolution are disclosed. The method-live cell computed tomography (LCCT)-in-volves the acquisition of a series of two dimensional (2D) pseudo-projection images from different perspectives of the cell that rotates around an axis that is perpendicular to the optical axis of the imaging system. The volumetric image of the cell is then tomographically reconstructed.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: April 26, 2022
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Deirdre Meldrum, Roger Johnson, Laimonas Kelbauskas, Jeff Houkal, Brian Ashcroft, Dean Smith, Hong Wang, Shih-Hui (Joseph) Chao, Rishabh Shetty, Jakrey Myers, Iniyan Soundappa Elango
  • Patent number: 11162192
    Abstract: Embodiments of the present disclosure relate generally to single molecule arrays. More particularly, the present disclosure provides materials and methods for generating single molecule arrays using bottom-up self-assembly processes. Materials and methods of the present disclosure can be used to generate single molecule arrays with nanoapertures (e.g., zero mode waveguides) and for carrying out rapid, point-of-care biomolecule detection and quantification.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 2, 2021
    Assignees: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Ashwin Gopinath, Paul Rothemund, Rishabh Shetty, Rizal Hariadi
  • Publication number: 20210032775
    Abstract: Embodiments of the present disclosure relate generally to single molecule arrays. More particularly, the present disclosure provides materials and methods for generating single molecule arrays using bottom-up self-assembly processes. Materials and methods of the present disclosure can be used to generate single molecule arrays with nanoapertures (e.g., zero mode waveguides) and for carrying out rapid, point-of-care biomolecule detection and quantification.
    Type: Application
    Filed: November 30, 2018
    Publication date: February 4, 2021
    Inventors: Ashwin GOPINATH, Paul ROTHEMUND, Rishabh SHETTY, Rizal HARIADI
  • Publication number: 20200058140
    Abstract: Systems and methods of using the same for functional fluorescence imaging of live cells in suspension with isotropic three dimensional (3D) diffraction-limited spatial resolution are disclosed. The method-live cell computed tomography (LCCT)-in-volves the acquisition of a series of two dimensional (2D) pseudo-projection images from different perspectives of the cell that rotates around an axis that is perpendicular to the optical axis of the imaging system. The volumetric image of the cell is then tomographically reconstructed.
    Type: Application
    Filed: March 2, 2018
    Publication date: February 20, 2020
    Inventors: Deirdre Meldrum, Roger Johnson, Laimonas Kelbauskas, Jeff Houkal, Brian Ashcroft, Dean Smith, Hong Wang, Shih-Hui (Joseph) Chao, Rishabh Shetty, Jakrey Myers, Iniyan Soundappa Elango
  • Publication number: 20190346361
    Abstract: Systems and methods of using the same for functional fluorescence imaging of live cells in suspension with isotropic three dimensional (3D) diffraction-limited spatial resolution are disclosed. The method-live cell computed tomography (LCCT)-involves the acquisition of a series of two dimensional (2D) pseudo-projection images from different perspectives of the cell that rotates around an axis that is perpendicular to the optical axis of the imaging system. The volumetric image of the cell is then tomographically reconstructed.
    Type: Application
    Filed: March 2, 2017
    Publication date: November 14, 2019
    Inventors: Deirdre Meldrum, Roger Johnson, Laimonas Kelbauskas, Jeff Houkal, Brian Ashcroft, Dean Smith, Hong Wang, Shih-Hui Joseph Chao, Rishabh Shetty, Jakrey Myers, Iniyan Soundappa Elango
  • Patent number: 10162162
    Abstract: Microfluidic devices for 3D hydrodynamic microvortical rotation of at least one live single cell or cell cluster, systems incorporating the devices, and methods of fabricating and using the devices and systems, are provided. A microfluidic chip rotates at least one live single cell or cell cluster in a microvortex about a stable rotation axis perpendicular to an optical axis within a chamber having a trapezoidal cross-sectional shape located below a flow channel. An optical trap may be used to position the cell or cells with the microvortex, and the cell or cells may be subject to live-cell or cell cluster computer tomography imaging.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: December 25, 2018
    Assignee: ARIZONA BOARD OF REGENTS, A BODY CORPORATE OF THE STATE OF ARIZONA, ACTING FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Hong Wang, Deirdre Meldrum, Rishabh Shetty, Laimonas Kelbauskas, Shih-Hui Chao, Roger Johnson, Jakrey Myers, Samantha Chan
  • Publication number: 20160084750
    Abstract: Microfluidic devices for 3D hydrodynamic microvortical rotation of at least one live single cell or cell cluster, systems incorporating the devices, and methods of fabricating and using the devices and systems, are provided. A microfluidic chip rotates at least one live single cell or cell cluster in a microvortex about a stable rotation axis perpendicular to an optical axis within a chamber having a trapezoidal cross-sectional shape located below a flow channel. An optical trap may be used to position the cell or cells with the microvortex, and the cell or cells may be subject to live-cell or cell cluster computer tomography imaging.
    Type: Application
    Filed: September 22, 2015
    Publication date: March 24, 2016
    Inventors: Hong Wang, Deirdre Meldrum, Rishabh Shetty, Laimonas Kelbauskas, Shih-Hui Chao, Roger Johnson, Jakrey Myers, Samantha Chan