Patents by Inventor Rishav Guha

Rishav Guha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240149445
    Abstract: A method includes, traversing a laser line scanning sensor over a workpiece to generate a series of scan data according to a first set of scan parameters; assembling the series of scan data into a virtual model; detecting a first hole, defining absence of scan data, in a first region of the virtual model; responsive to the first hole defining a dimension less than a threshold dimension, assigning the first set of scan parameters to the first region; detecting a second hole, in a second region of the virtual model; responsive to the second hole defining a dimension greater than the threshold dimension, defining a second set of scan parameters associated with an increased resolution and assigning the second set of scan parameters to the second workpiece region; and compiling the first and second set of scan parameters into a scan protocol defining a minimum scan cycle duration.
    Type: Application
    Filed: November 13, 2023
    Publication date: May 9, 2024
    Inventors: Avadhoot L. Ahire, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Sagarkumar J. Panchal, Brual C. Shah
  • Patent number: 11979781
    Abstract: A method for selecting cell using a fifth generation (5G) user equipment (UE) is provided. The method includes detecting an event, when the 5G UE is camped on a serving cell; detecting availability of one or more voice over new radio (VoNR) cells and one or more non-VoNR cells in vicinity of the serving cell in response to detecting the event; based on the event, performing one of (i) selecting a VoNR cell when only one VoNR cell is available, (ii) identifying and selecting a VoNR cell based on a plurality of cell parameters, when a plurality of VoNR cells are available, and (iii) identifying and selecting a non-VoNR cell from the one or more non-VoNR cells, based on the plurality of cell parameters, when one of the one or more non-VoNR cells is available.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: May 7, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shanthossh Nagarajan, Rishav Agarwal, Shouvik Guha, Sumit Verma
  • Patent number: 11975453
    Abstract: A method includes: accessing a virtual model defining a geometry of a workpiece; navigating an optical sensor about the workpiece; accessing an image of the workpiece; detecting a marker, on the workpiece, depicted in the image; defining a first workpiece region of the workpiece bounded by the marker; defining a toolpath within the first workpiece region based on a geometry of the first workpiece region represented in the virtual model; assigning a first target force to the first toolpath; and during a processing cycle accessing a first sequence of force values output by a force sensor coupled to the sanding head, navigating the sanding head across the first workpiece region according to the first toolpath, and based on the first sequence of force values, deviating the sanding head from the first toolpath to maintain forces of the sanding head on the workpiece proximal the first target force.
    Type: Grant
    Filed: November 29, 2023
    Date of Patent: May 7, 2024
    Assignee: GrayMatter Robotics Inc.
    Inventors: Avadhoot L. Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M Kabir, Sagarkumar J. Panchal, Brual C. Shah
  • Patent number: 11938632
    Abstract: A method includes: compiling lower-resolution images, captured during a global scan cycle executed over a workpiece, into a virtual model; defining a nominal toolpath and a nominal target force for the workpiece based on a the virtual model; detecting a defect indicator on the workpiece based on the lower-resolution images; accessing a higher-resolution image captured during a local scan cycle over the defect indicator; characterizing the defect indicator as a defect reparable via material removal based on the higher-resolution image; defining a repair toolpath for the defect based on the virtual model; navigating a sanding head over the workpiece according to the repair toolpath to repair the defect; and, during a processing cycle: navigating the sanding head across the workpiece according to the nominal toolpath and deviating the sanding head from the nominal toolpath to maintain forces of the sanding head on the workpiece proximal the nominal target force.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: March 26, 2024
    Assignee: GrayMatter Robotics Inc.
    Inventors: Avadhoot Ahire, YiWei Chen, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Ashish Kulkarni, Caesar Navarro, Sagar Panchal, Brual C. Shah
  • Publication number: 20240091935
    Abstract: A method includes: accessing a virtual model defining a geometry of a workpiece; navigating an optical sensor about the workpiece; accessing an image of the workpiece; detecting a marker, on the workpiece, depicted in the image; defining a first workpiece region of the workpiece bounded by the marker; defining a toolpath within the first workpiece region based on a geometry of the first workpiece region represented in the virtual model; assigning a first target force to the first toolpath; and during a processing cycle accessing a first sequence of force values output by a force sensor coupled to the sanding head, navigating the sanding head across the first workpiece region according to the first toolpath, and based on the first sequence of force values, deviating the sanding head from the first toolpath to maintain forces of the sanding head on the workpiece proximal the first target force.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Avadhoot L. Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Sagarkumar J. Panchal, JR., Brual C. Shah
  • Patent number: 11897136
    Abstract: One variation of a method for autonomously scanning and processing a part includes: accessing a part model representing a part positioned in a work zone adjacent a robotic system; retrieving a sanding head translation speed; retrieving a toolpath for execution on the part defining positions, orientations, and target forces applied by the sanding head to the part. The method includes traversing the sanding head along the toolpath, at the sanding head translation speed; reading a sequence of applied forces from a force sensor coupled to the sanding head at positions along the toolpath; and deviating from the toolpath to maintain the set of applied forces within a threshold difference of a sequence of target forces along the toolpath. In one variation of the method, the robotic system executes a toolpath at a duration less than target duration by selectively varying target force and sanding head translation speed across the part.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: February 13, 2024
    Assignee: GrayMatter Robotics Inc.
    Inventors: Cheng Gong, Rishav Guha, Satyandra K. Gupta, Marshall J. Jacobs, Ariyan M. Kabir, Ceasar G. Navarro, Brual C. Shah
  • Publication number: 20240033914
    Abstract: One variation of a method includes: accessing a maximum deflection distance of a workpiece; defining a first workpiece region characterized by a first compliance range; defining a second workpiece region characterized by a second compliance range greater than the first compliance range; assigning a nominal target force to the workpiece; navigating a sanding head across the first workpiece region during a processing cycle; driving the sanding head below a virtual unloaded surface of the workpiece stored in the virtual model to maintain forces, of the sanding head on the first workpiece region, approximating the nominal target force; calculating a maximum offset between the positions of the sanding head in the first workpiece region and the virtual unloaded surface; and, in response to the first maximum offset approaching the maximum deflection distance, assigning a lower target force to the second workpiece region of the workpiece.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Sagar Panchal, Brual C. Shah
  • Publication number: 20240033915
    Abstract: A method includes: compiling lower-resolution images, captured during a global scan cycle executed over a workpiece, into a virtual model; defining a nominal toolpath and a nominal target force for the workpiece based on a the virtual model; detecting a defect indicator on the workpiece based on the lower-resolution images; accessing a higher-resolution image captured during a local scan cycle over the defect indicator; characterizing the defect indicator as a defect reparable via material removal based on the higher-resolution image; defining a repair toolpath for the defect based on the virtual model; navigating a sanding head over the workpiece according to the repair toolpath to repair the defect; and, during a processing cycle: navigating the sanding head across the workpiece according to the nominal toolpath and deviating the sanding head from the nominal toolpath to maintain forces of the sanding head on the workpiece proximal the nominal target force.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Inventors: Avadhoot Ahire, YiWei Chen, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Ashish Kulkarni, Ceasar Navarro, Sagar Panchal, Brual C. Shah
  • Publication number: 20240033913
    Abstract: A method includes: compiling images, captured by an end effector traversing a scan path over a workpiece, into a virtual model of the workpiece; generating a toolpath based on a geometry of the workpiece represented in the virtual model; and assigning a target force to the workpiece. The method also includes, during a processing cycle: navigating a sanding head, arranged on the end effector, across the workpiece according to the toolpath; based on force values output by a force sensor coupled to the sanding head, deviating the sanding head from the toolpath to maintain forces of the sanding head on the workpiece proximal the target force; and tracking a sequence of positions of a reference point on the sanding head, traversing the workpiece, in contact with the workpiece. The method also includes transforming the virtual model into alignment with the sequence of positions of the reference point.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Michael Marsh, JR., Brual C. Shah
  • Publication number: 20230373086
    Abstract: A method includes: compiling images, captured by an end effector traversing a scan path over a workpiece, into a virtual model of the workpiece; generating a toolpath based on a geometry of the workpiece represented in the virtual model; and assigning a target force to the workpiece. The method also includes, during a processing cycle: navigating a sanding head, arranged on the end effector, across the workpiece according to the toolpath; based on force values output by a force sensor coupled to the sanding head, deviating the sanding head from the toolpath to maintain forces of the sanding head on the workpiece proximal the target force; and tracking a sequence of positions of a reference point on the sanding head, traversing the workpiece, in contact with the workpiece. The method also includes transforming the virtual model into alignment with the sequence of positions of the reference point.
    Type: Application
    Filed: April 18, 2023
    Publication date: November 23, 2023
    Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Michael Marsh, JR., Brual C. Shah
  • Patent number: 11820018
    Abstract: A method includes: compiling images, captured by an end effector traversing a scan path over a workpiece, into a virtual model of the workpiece; generating a toolpath based on a geometry of the workpiece represented in the virtual model; and assigning a target force to the workpiece. The method also includes, during a processing cycle: navigating a sanding head, arranged on the end effector, across the workpiece according to the toolpath; based on force values output by a force sensor coupled to the sanding head, deviating the sanding head from the toolpath to maintain forces of the sanding head on the workpiece proximal the target force; and tracking a sequence of positions of a reference point on the sanding head, traversing the workpiece, in contact with the workpiece. The method also includes transforming the virtual model into alignment with the sequence of positions of the reference point.
    Type: Grant
    Filed: April 18, 2023
    Date of Patent: November 21, 2023
    Assignee: GrayMatter Robotics Inc.
    Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Michael Marsh, Jr., Brual C Shah
  • Patent number: 11820016
    Abstract: One variation of a method includes: accessing a maximum deflection distance of a workpiece; defining a first workpiece region characterized by a first compliance range; defining a second workpiece region characterized by a second compliance range greater than the first compliance range; assigning a nominal target force to the workpiece; navigating a sanding head across the first workpiece region during a processing cycle; driving the sanding head below a virtual unloaded surface of the workpiece stored in the virtual model to maintain forces, of the sanding head on the first workpiece region, approximating the nominal target force; calculating a maximum offset between the positions of the sanding head in the first workpiece region and the virtual unloaded surface; and, in response to the first maximum offset approaching the maximum deflection distance, assigning a lower target force to the second workpiece region of the workpiece.
    Type: Grant
    Filed: March 27, 2023
    Date of Patent: November 21, 2023
    Assignee: GrayMatter Robotics Inc.
    Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Sagar Panchal, Brual C. Shah
  • Publication number: 20230302641
    Abstract: A method includes: compiling lower-resolution images, captured during a global scan cycle executed over a workpiece, into a virtual model; defining a nominal toolpath and a nominal target force for the workpiece based on a the virtual model; detecting a defect indicator on the workpiece based on the lower-resolution images; accessing a higher-resolution image captured during a local scan cycle over the defect indicator; characterizing the defect indicator as a defect reparable via material removal based on the higher-resolution image; defining a repair toolpath for the defect based on the virtual model; navigating a sanding head over the workpiece according to the repair toolpath to repair the defect; and, during a processing cycle: navigating the sanding head across the workpiece according to the nominal toolpath and deviating the sanding head from the nominal toolpath to maintain forces of the sanding head on the workpiece proximal the nominal target force.
    Type: Application
    Filed: May 2, 2023
    Publication date: September 28, 2023
    Inventors: Avadhoot Ahire, YiWei Chen, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Ashish Kulkarni, JR., Caesar Navarro, Sagar Panchal, Brual C. Shah
  • Publication number: 20230302640
    Abstract: One variation of a method includes: accessing a maximum deflection distance of a workpiece; defining a first workpiece region characterized by a first compliance range; defining a second workpiece region characterized by a second compliance range greater than the first compliance range; assigning a nominal target force to the workpiece; navigating a sanding head across the first workpiece region during a processing cycle; driving the sanding head below a virtual unloaded surface of the workpiece stored in the virtual model to maintain forces, of the sanding head on the first workpiece region, approximating the nominal target force; calculating a maximum offset between the positions of the sanding head in the first workpiece region and the virtual unloaded surface; and, in response to the first maximum offset approaching the maximum deflection distance, assigning a lower target force to the second workpiece region of the workpiece.
    Type: Application
    Filed: March 27, 2023
    Publication date: September 28, 2023
    Inventors: Avadhoot Ahire, Cheng Gong, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Vihan Krishnan, Sagar Panchal, Brual C. Shah
  • Publication number: 20230278207
    Abstract: One variation of a method for autonomously scanning and processing a part includes: collecting a set of images depicting a part positioned within a work zone adjacent a robotic system; assembling the set of images into a part model representing the part. The method includes segmenting areas of the part model—delineated by local radii of curvature, edges, or color boundaries—into target zones for processing by the robotic system and exclusion zones avoided by the robotic system. The method includes: projecting a set of keypoints onto the target zone of part model defining positions, orientations, and target forces of a sanding head applied at locations on the part model; assembling the set of keypoints into a toolpath and projecting the toolpath onto the target zone of the part model; and transmitting the toolpath to a robotic system to execute the toolpath on the part within the work zone.
    Type: Application
    Filed: February 17, 2023
    Publication date: September 7, 2023
    Inventors: Avadhoot L. Ahire, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Brual C Shah
  • Publication number: 20230126085
    Abstract: One variation of a method for autonomously scanning and processing a part includes: accessing a part model representing a part positioned in a work zone adjacent a robotic system; retrieving a sanding head translation speed; retrieving a toolpath for execution on the part defining positions, orientations, and target forces applied by the sanding head to the part. The method includes traversing the sanding head along the toolpath, at the sanding head translation speed; reading a sequence of applied forces from a force sensor coupled to the sanding head at positions along the toolpath; and deviating from the toolpath to maintain the set of applied forces within a threshold difference of a sequence of target forces along the toolpath. In one variation of the method, the robotic system executes a toolpath at a duration less than target duration by selectively varying target force and sanding head translation speed across the part.
    Type: Application
    Filed: December 22, 2022
    Publication date: April 27, 2023
    Inventors: Cheng Gong, Rishav Guha, Satyandra K. Gupta, Marshall J. Jacobs, Ariyan M. Kabir, Ceasar G. Navarro, Brual C. Shah
  • Patent number: 11613014
    Abstract: One variation of a method for autonomously scanning and processing a part includes: collecting a set of images depicting a part positioned within a work zone adjacent a robotic system; assembling the set of images into a part model representing the part. The method includes segmenting areas of the part model—delineated by local radii of curvature, edges, or color boundaries—into target zones for processing by the robotic system and exclusion zones avoided by the robotic system. The method includes: projecting a set of keypoints onto the target zone of part model defining positions, orientations, and target forces of a sanding head applied at locations on the part model; assembling the set of keypoints into a toolpath and projecting the toolpath onto the target zone of the part model; and transmitting the toolpath to a robotic system to execute the toolpath on the part within the work zone.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: March 28, 2023
    Assignee: GrayMatter Robotics Inc.
    Inventors: Avadhoot L. Ahire, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Brual C Shah
  • Patent number: 11584005
    Abstract: One variation of a method for autonomously scanning and processing a part includes: accessing a part model representing a part positioned in a work zone adjacent a robotic system; retrieving a sanding head translation speed; retrieving a toolpath for execution on the part defining positions, orientations, and target forces applied by the sanding head to the part. The method includes traversing the sanding head along the toolpath, at the sanding head translation speed; reading a sequence of applied forces from a force sensor coupled to the sanding head at positions along the toolpath; and deviating from the toolpath to maintain the set of applied forces within a threshold difference of a sequence of target forces along the toolpath. In one variation of the method, the robotic system executes a toolpath at a duration less than target duration by selectively varying target force and sanding head translation speed across the part.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: February 21, 2023
    Assignee: GrayMatter Robotics Inc.
    Inventors: Cheng Gong, Rishav Guha, Satyandra K. Gupta, Marshall J. Jacobs, Ariyan M. Kabir, Ceasar G. Navarro, Brual C. Shah
  • Publication number: 20220388115
    Abstract: One variation of a method S100 for autonomously scanning and processing a part includes: collecting a set of images depicting a part positioned within a work zone adjacent a robotic system; assembling the set of images into a part model representing the part. The method includes segmenting areas of the part model—delineated by local radii of curvature, edges, or color boundaries—into target zones for processing by the robotic system and exclusion zones avoided by the robotic system. The method includes: projecting a set of keypoints onto the target zone of part model defining positions, orientations, and target forces of a sanding head applied at locations on the part model; assembling the set of keypoints into a toolpath and projecting the toolpath onto the target zone of the part model; and transmitting the toolpath to a robotic system to execute the toolpath on the part within the work zone.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 8, 2022
    Inventors: Avadhoot L. Ahire, Rishav Guha, Satyandra K. Gupta, Ariyan M. Kabir, Brual C Shah
  • Publication number: 20220371190
    Abstract: One variation of a method for autonomously scanning and processing a part includes: accessing a part model representing a part positioned in a work zone adjacent a robotic system; retrieving a sanding head translation speed; retrieving a toolpath for execution on the part defining positions, orientations, and target forces applied by the sanding head to the part. The method includes traversing the sanding head along the toolpath, at the sanding head translation speed; reading a sequence of applied forces from a force sensor coupled to the sanding head at positions along the toolpath; and deviating from the toolpath to maintain the set of applied forces within a threshold difference of a sequence of target forces along the toolpath. In one variation of the method, the robotic system executes a toolpath at a duration less than target duration by selectively varying target force and sanding head translation speed across the part.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 24, 2022
    Inventors: Cheng Gong, Rishav Guha, Satyandra K. Gupta, Marshall J. Jacobs, Ariyan M. Kabir, Ceasar G. Navarro, Brual C. Shah