Patents by Inventor Ritesh Jhaveri

Ritesh Jhaveri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12131912
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Grant
    Filed: December 6, 2023
    Date of Patent: October 29, 2024
    Assignee: Intel Corporation
    Inventors: Muralidhar S. Ambati, Ritesh Jhaveri, Moosung Kim
  • Patent number: 12094881
    Abstract: Techniques are disclosed for providing an integrated circuit structure having NMOS transistors including an arsenic-doped interface layer between epitaxially grown source/drain regions and a channel region. The arsenic-doped interface layer may include, for example, arsenic-doped silicon (Si:As) having arsenic concentrations in a range of about 1E20 atoms per cm3 to about 5E21 atoms per cm3. The interface layer may have a relatively uniform thickness in a range of about 0.5 nm to full fill where the entire source/drain region is composed of the Si:As. In cases where the arsenic-doped interface layer only partially fills the source/drain regions, another n-type doped semiconductor material can fill remainder (e.g., phosphorus-doped III-V compound or silicon).
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: September 17, 2024
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Ryan Keech, Nicholas G. Minutillo, Ritesh Jhaveri
  • Publication number: 20240120206
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Application
    Filed: December 6, 2023
    Publication date: April 11, 2024
    Inventors: Muralidhar S. AMBATI, Ritesh JHAVERI, Moosung KIM
  • Patent number: 11875999
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: January 16, 2024
    Inventors: Muralidhar S. Ambati, Ritesh Jhaveri, Moosung Kim
  • Publication number: 20230197729
    Abstract: Techniques are disclosed for providing an integrated circuit structure having NMOS transistors including an arsenic-doped interface layer between epitaxially grown source/drain regions and a channel region. The arsenic-doped interface layer may include, for example, arsenic-doped silicon (Si:As) having arsenic concentrations in a range of about 1E20 atoms per cm3 to about 5E21 atoms per cm3. The interface layer may have a relatively uniform thickness in a range of about 0.5 nm to full fill where the entire source/drain region is composed of the Si:As. In cases where the arsenic-doped interface layer only partially fills the source/drain regions, another n-type doped semiconductor material can fill remainder (e.g., phosphorus-doped III-V compound or silicon).
    Type: Application
    Filed: February 10, 2023
    Publication date: June 22, 2023
    Inventors: Anand Murthy, Ryan Keech, Nicholas G. Minutillo, Ritesh Jhaveri
  • Patent number: 11610889
    Abstract: Techniques are disclosed for providing an integrated circuit structure having NMOS transistors including an arsenic-doped interface layer between epitaxially grown source/drain regions and a channel region. The arsenic-doped interface layer may include, for example, arsenic-doped silicon (Si:As) having arsenic concentrations in a range of about 1E20 atoms per cm3 to about 5E21 atoms per cm3. The interface layer may have a relatively uniform thickness in a range of about 0.5 nm to full fill where the entire source/drain region is composed of the Si:As. In cases where the arsenic-doped interface layer only partially fills the source/drain regions, another n-type doped semiconductor material can fill remainder (e.g., phosphorus-doped III-V compound or silicon).
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Ryan Keech, Nicholas G. Minutillo, Ritesh Jhaveri
  • Publication number: 20220344165
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Application
    Filed: July 7, 2022
    Publication date: October 27, 2022
    Inventors: Muralidhar S. AMBATI, Ritesh JHAVERI, Moosung KIM
  • Patent number: 11417531
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Muralidhar S. Ambati, Ritesh Jhaveri, Moosung Kim
  • Patent number: 11101268
    Abstract: Techniques are disclosed for forming transistors employing non-selective deposition of source and drain (S/D) material. Non-selectively depositing S/D material provides a multitude of benefits over only selectively depositing the S/D material, such as being able to attain relatively higher dopant activation, steeper dopant profiles, and better channel strain, for example.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Karthik Jambunathan, Scott J. Maddox, Ritesh Jhaveri, Pratik A. Patel, Szuya S. Liao, Anand S. Murthy, Tahir Ghani
  • Publication number: 20210183658
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Application
    Filed: February 1, 2021
    Publication date: June 17, 2021
    Inventors: Muralidhar S. AMBATI, Ritesh JHAVERI, Moosung KIM
  • Patent number: 11011620
    Abstract: Techniques are disclosed for forming increasing channel region tensile strain in n-MOS devices. In some cases, increased channel region tensile strain can be achieved via S/D material engineering that deliberately introduces dislocations in one or both of the S/D regions to produce tensile strain in the adjacent channel region. In some such cases, the S/D material engineering to create desired dislocations may include using a lattice mismatched epitaxial S/D film adjacent to the channel region. Numerous material schemes for achieving multiple dislocations in one or both S/D regions will be apparent in light of this disclosure. In some cases, a cap layer can be formed on an S/D region to reduce contact resistance, such that the cap layer is an intervening layer between the S/D region and S/D contact. The cap layer includes different material than the underlying S/D region and/or a higher dopant concentration to reduce contact resistance.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: May 18, 2021
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Cory E. Weber, Anand S. Murthy, Karthik Jambunathan, Glenn A. Glass, Jiong Zhang, Ritesh Jhaveri, Szuya S. Liao
  • Patent number: 10950453
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: March 16, 2021
    Assignee: Intel Corporation
    Inventors: Muralidhar S. Ambati, Ritesh Jhaveri, Moosung Kim
  • Publication number: 20200227266
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Application
    Filed: March 31, 2020
    Publication date: July 16, 2020
    Inventors: Muralidhar S. AMBATI, Ritesh JHAVERI, Moosung KIM
  • Publication number: 20200161440
    Abstract: An apparatus is provided which comprises: a semiconductor region on a substrate, a gate stack on the semiconductor region, a source region comprising doped semiconductor material on the substrate adjacent a first side of the semiconductor region, a drain region comprising doped semiconductor material on the substrate adjacent a second side of the semiconductor region, a substantially conformal semiconductor layer over a surface of a recess in the source region, and a metal over the conformal layer substantially filling the recess in the source region. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: June 30, 2017
    Publication date: May 21, 2020
    Applicant: Intel Corporation
    Inventors: Ritesh Jhaveri, Pratik A. Patel, Ralph T. Troeger, Szuya S. Liao, Karthik Jambunathan, Scott J. Maddox, Kai Loon Cheong, Anand S. Murthy
  • Patent number: 10643855
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: May 5, 2020
    Assignee: Intel Corporation
    Inventors: Muralidhar S. Ambati, Ritesh Jhaveri, Moosung Kim
  • Publication number: 20200105754
    Abstract: Techniques are disclosed for providing an integrated circuit structure having NMOS transistors including an arsenic-doped interface layer between epitaxially grown source/drain regions and a channel region. The arsenic-doped interface layer may include, for example, arsenic-doped silicon (Si:As) having arsenic concentrations in a range of about 1E20 atoms per cm3 to about 5E21 atoms per cm3. The interface layer may have a relatively uniform thickness in a range of about 0.5 nm to full fill where the entire source/drain region is composed of the Si:As. In cases where the arsenic-doped interface layer only partially fills the source/drain regions, another n-type doped semiconductor material can fill remainder (e.g., phosphorus-doped III-V compound or silicon).
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Applicant: INTEL CORPORATION
    Inventors: Anand Murthy, Ryan Keech, Nicholas G. Minutillo, Ritesh Jhaveri
  • Publication number: 20190355721
    Abstract: Techniques are disclosed for forming transistors employing non-selective deposition of source and drain (S/D) material. Non-selectively depositing S/D material provides a multitude of benefits over only selectively depositing the S/D material, such as being able to attain relatively higher dopant activation, steeper dopant profiles, and better channel strain, for example.
    Type: Application
    Filed: March 30, 2017
    Publication date: November 21, 2019
    Applicant: INTEL CORPORATION
    Inventors: KARTHIK JAMBUNATHAN, SCOTT J. MADDOX, RITESH JHAVERI, PRATIK A. PATEL, SZUYA S. LIAO, ANAND S. MURTHY, TAHIR GHANI
  • Publication number: 20190207015
    Abstract: Techniques are disclosed for forming increasing channel region tensile strain in n-MOS devices. In some cases, increased channel region tensile strain can be achieved via S/D material engineering that deliberately introduces dislocations in one or both of the S/D regions to produce tensile strain in the adjacent channel region. In some such cases, the S/D material engineering to create desired dislocations may include using a lattice mismatched epitaxial S/D film adjacent to the channel region. Numerous material schemes for achieving multiple dislocations in one or both S/D regions will be apparent in light of this disclosure. In some cases, a cap layer can be formed on an S/D region to reduce contact resistance, such that the cap layer is an intervening layer between the S/D region and S/D contact. The cap layer includes different material than the underlying S/D region and/or a higher dopant concentration to reduce contact resistance.
    Type: Application
    Filed: September 27, 2016
    Publication date: July 4, 2019
    Applicant: INTEL CORPORATION
    Inventors: RISHABH MEHANDRU, CORY E. WEBER, ANAND S. MURTHY, KARTHIK JAMBUNATHAN, GLENN A. GLASS, JIONG ZHANG, RITESH JHAVERI, SZUYA S. LIAO
  • Publication number: 20190131138
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Application
    Filed: December 27, 2018
    Publication date: May 2, 2019
    Inventors: Muralidhar S. AMBATI, Ritesh JHAVERI, Moosung KIM
  • Patent number: 10204794
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: February 12, 2019
    Assignee: Intel Corporation
    Inventors: Muralidhar S. Ambati, Ritesh Jhaveri, Moosung Kim