Patents by Inventor Ritika Chaturvedi

Ritika Chaturvedi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230201425
    Abstract: The present disclosure provides patterned biomaterials having organized cords and extracellular matrix embedded in a 3D scaffold. According, the present disclosure provides compositions and applications for patterned biomaterials. Pre-patterning of these biomaterials can lead to enhanced integration of these materials into host organisms, providing a strategy for enhancing the viability of engineered tissues by promoting vascularization.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 29, 2023
    Inventors: Christopher S. Chen, Jan D. Baranski, Ritika Chaturvedi, Michael T. Yang, Kelly Stevens, Sangeeta Bhatia
  • Patent number: 11617817
    Abstract: The present disclosure provides patterned biomaterials having organized cords and extracellular matrix embedded in a 3D scaffold. According, the present disclosure provides compositions and applications for patterned biomaterials. Pre-patterning of these biomaterials can lead to enhanced integration of these materials into host organisms, providing a strategy for enhancing the viability of engineered tissues by promoting vascularization.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: April 4, 2023
    Assignees: The Trustees of the University of Pennsylvania, Massachusetts Institute of Technology
    Inventors: Christopher S. Chen, Jan D. Baranski, Ritika Chaturvedi, Michael T. Yang, Kelly Stevens, Sangeeta Bhatia
  • Patent number: 11324858
    Abstract: The present disclosure provides patterned biomaterials having organized cords and extracellular matrix embedded in a 3D scaffold. According, the present disclosure provides compositions and applications for patterned biomaterials. Pre-patterning of these biomaterials can lead to enhanced integration of these materials into host organisms, providing a strategy for enhancing the viability of engineered tissues by promoting vascularization.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: May 10, 2022
    Assignees: The Trustees of the University of Pennsylvania, Massachusetts Institute of Technology
    Inventors: Christopher S. Chen, Jan D. Baranski, Ritika Chaturvedi, Michael T. Yang, Kelly R. Stevens, Sangeeta N. Bhatia
  • Publication number: 20210213171
    Abstract: The present disclosure provides patterned biomaterials having organized cords and extracellular matrix embedded in a 3D scaffold. According, the present disclosure provides compositions and applications for patterned biomaterials. Pre-patterning of these biomaterials can lead to enhanced integration of these materials into host organisms, providing a strategy for enhancing the viability of engineered tissues by promoting vascularization.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 15, 2021
    Inventors: Christopher S. CHEN, Jan D. BARANSKI, Ritika CHATURVEDI, Michael T. YANG, Kelly R. STEVENS, Sangeeta N. BHATIA
  • Publication number: 20200101201
    Abstract: The present disclosure provides patterned biomaterials having organized cords and extracellular matrix embedded in a 3D scaffold. According, the present disclosure provides compositions and applications for patterned biomaterials. Pre-patterning of these biomaterials can lead to enhanced integration of these materials into host organisms, providing a strategy for enhancing the viability of engineered tissues by promoting vascularization.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 2, 2020
    Applicants: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, The Massachusetts Institute of Technology
    Inventors: Christopher S. Chen, Jan D. Baranski, Ritika Chaturvedi, Michael T. Yang, Kelly Stevens, Sangeeta Bhatia
  • Patent number: 10426870
    Abstract: The present disclosure provides patterned biomaterials having organized cords and extracellular matrix embedded in a 3D scaffold. According, the present disclosure is provides compositions and applications for patterned biomaterials. Pre-patterning of these biomaterials can lead to enhanced integration of these materials into host organisms, providing a strategy for enhancing the viability of engineered tissues by promoting vascularization.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: October 1, 2019
    Assignees: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, The Massachusetts Institute of Technology
    Inventors: Christopher S. Chen, Jan D. Baranski, Ritika Chaturvedi, Michael T. Yang, Kelly Stevens, Sangeeta Bhatia
  • Publication number: 20150125507
    Abstract: The present disclosure provides patterned biomaterials having organized cords and extracellular matrix embedded in a 3D scaffold. According, the present disclosure is provides compositions and applications for patterned biomaterials. Pre-patterning of these biomaterials can lead to enhanced integration of these materials into host organisms, providing a strategy for enhancing the viability of engineered tissues by promoting vascularization.
    Type: Application
    Filed: January 9, 2015
    Publication date: May 7, 2015
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Christopher S. Chen, Jan D. Baranski, Ritika Chaturvedi, Michael T. Yang