Patents by Inventor Robert A. Ackermann

Robert A. Ackermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945983
    Abstract: A sealing device includes a waterproofing membrane, an adhesive sealant layer, and optionally a release liner, wherein the adhesive sealant layer includes at least one elastomer, at least one at 25° C. liquid polyolefin resin, and at least one inert mineral filler. An adhesive sealant composition is used to form the adhesive sealant layer. The sealant device may be used to waterproof a substrate and provide a fully-adhered roof system. The adhesive sealant composition may be used to provide a self-healing roofing membrane.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: April 2, 2024
    Assignee: SIKA TECHNOLOGY AG
    Inventors: Herbert Ackermann, Simon Schönbrodt, Carine Kerber, Robert Roskamp
  • Patent number: 9494359
    Abstract: A cryogenic system includes a superconducting magnet (20) in a reservoir of liquid helium (LH). Helium vapor (VH) rises and contacts a recondenser surface (50, 50?, 50?) on which the helium vapor (VH) condenses into liquid helium and flows by gravity off a lower edge of the recondenser surface. A plurality of fins (52) extend from the recondenser surface or a plurality of grooves (52?, 52?) are cut into the recondenser surface to disrupt the film thickness and to provide a path by which droplets of the liquid helium leave the recondenser surface without travelling a full vertical length of the recondenser (30).
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: November 15, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Glen G. Pfleiderer, Robert A. Ackermann
  • Patent number: 9074798
    Abstract: When cooling a superconducting magnet for use in a magnetic resonance imaging (MRI) device, a two-stage cryocooler (42) employs a first stage cooler (52) to cool a working gas (e.g., Helium, Hydrogen, etc.) to approximately 25 K. The working gas moves through a tubing system by convection until the magnet (20) is at approximately 25K. Once the magnet (20) reaches 25 K, gas flow stops, and a second stage cooler (54) cools the magnet (20) further, to about 4 K.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: July 7, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Robert A. Ackermann, Philippe A. Menteur
  • Publication number: 20130023418
    Abstract: When cooling a superconducting magnet for use in a magnetic resonance imaging (MRI) device, a two-stage cryocooler (42) employs a first stage cooler (52) to cool a working gas (e.g., Helium, Hydrogen, etc.) to approximately 25 K. The working gas moves through a tubing system by convection until the magnet (20) is at approximately 25K. Once the magnet (20) reaches 25 K, gas flow stops, and a second stage cooler (54) cools the magnet (20) further, to about 4 K.
    Type: Application
    Filed: December 7, 2010
    Publication date: January 24, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Robert A. Ackermann, Philippe A. Menteur
  • Publication number: 20110160064
    Abstract: A cryogenic system includes a superconducting magnet (20) in a reservoir of liquid helium (LH). Helium vapor (VH) rises and contacts a recondenser surface (50, 50?, 50?) on which the helium vapor (VH) condenses into liquid helium and flows by gravity off a lower edge of the recondenser surface. A plurality of fins (52) extend from the recondenser surface or a plurality of grooves (52?, 52?) are cut into the recondenser surface to disrupt the film thickness and to provide a path by which droplets of the liquid helium leave the recondenser surface without travelling a full vertical length of the recondenser (30).
    Type: Application
    Filed: August 27, 2009
    Publication date: June 30, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Glen G. Pfleiderer, Robert A. Ackermann
  • Publication number: 20080209919
    Abstract: A system can include a heat transfer structure and a heat exchanger. The heat transfer structure is to cool an object, and the heat exchanger is to cool a portion of the heat transfer structure. The system can be cooled significantly faster than a conventional system that uses conductive cooling. The system has no or less liquid cryogen that would be vaporized as compared to a conventional system that immerses the object to be cooled within a bath of liquid cryogen or has a substantial mass of liquid cryogen within a cooling loop.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 4, 2008
    Applicant: PHILIPS MEDICAL SYSTEMS MR, INC.
    Inventors: Robert A. Ackermann, Philippe Menteur, Chandra T. Reis
  • Publication number: 20070095150
    Abstract: A method for calculating a mass flow rate of a cryogenic fluid within a flow tube includes positioning a sensor within a stream of cryogenic fluid flowing through the flow tube. The sensor is operatively coupled to a strain gauge. A difference between a dynamic pressure in the fluid stream and a static pressure in the fluid stream is measured and the mass flow rate of the cryogenic fluid within the flow tube is calculated.
    Type: Application
    Filed: November 2, 2005
    Publication date: May 3, 2007
    Inventors: John Urbahn, Robert Ackermann
  • Publication number: 20050086974
    Abstract: A cooling system for providing cryogenic cooling fluid to an apparatus comprises a re-circulation device, a passive cold storage device having a porous matrix of material which directly contacts the cryogenic cooling fluid as the cryogenic cooling fluid passes through the passive cold storage device, a first portion of a fluid communication feed line fluidly connecting the re-circulation device to the passive cold storage device, a second portion of a fluid communication feed line fluidly connecting the passive cold storage device to the apparatus for communicating cryogenic cooling fluid to the apparatus, and a fluid communication return line fluidly connecting the apparatus to the re-circulation device. The passive cold storage device may comprise a regenerative heat exchanger including a porous matrix of metal wire mesh, metal spheres or ceramic spheres.
    Type: Application
    Filed: July 18, 2003
    Publication date: April 28, 2005
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Albert Steinbach, Robert Ackermann, Xianrui Huang
  • Patent number: 5752602
    Abstract: A stackable and nestable container having a bottom surface, a first pair of opposed end walls integrally joined with the bottom surface and extending upwardly away therefrom, and a second pair of opposed side walls integrally joined with the bottom surface and extending upwardly away therefrom. The first and second pairs of opposed end walls and side walls are integrally joined with each other along common end surfaces thereof to form with the bottom surface a substantially rectangular open top container. Each of the end walls and side walls includes a pair of column sections, and each of the column sections includes a recessed portion, an inner shelf and a lower column support. Each of the end walls and side walls further includes a pair of stacking sections, and each of the stacking sections includes a stacking foot and a stacking shelf.
    Type: Grant
    Filed: February 13, 1996
    Date of Patent: May 19, 1998
    Assignee: Rehrig-Pacific Company Inc.
    Inventors: Jeffrey Robert Ackermann, William Patrick Apps, Glenn McCord Phillips
  • Patent number: 5574001
    Abstract: A superconductive lead assembly for a superconductive device (e.g., magnet) cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end flexibly, dielectrically, and thermally connected to the first stage and a second end flexibly, dielectrically, and thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in general surrounding compressive contact with the first ceramic superconductive lead, and a rigid support tube generally surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connectable to the second stage.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: November 12, 1996
    Assignee: General Electric Company
    Inventors: Robert A. Ackermann, Kenneth G. Herd, Evangelos T. Laskaris, Richard A. Ranze
  • Patent number: 5571606
    Abstract: A superconductive lead assembly for a superconductive device (e.g., magnet) cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end flexibly, dielectrically, and thermally connected to the first stage and a second end flexibly, dielectrically, and thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in general surrounding compressive contact with the first ceramic superconductive lead, and a rigid support tube generally surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connectable to the second stage.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: November 5, 1996
    Assignee: General Electric Company
    Inventors: Robert A. Ackermann, Kenneth G. Herd, Evangelos T. Laskaris, Richard A. Ranze
  • Patent number: 5563566
    Abstract: An open magnetic resonance imaging (MRI) magnet having longitudinally spaced-apart superconductive main coils surrounded by a dewar containing a cryogenic liquid (e.g., liquid helium) and boiled-off cryogenic gas (e.g., helium vapor). A condenser is in physical contact with the boiled-off vapor and is in thermal contact with a cold stage of a cryocooler coldhead so as to re-liquefy the vapor. This allows the coils to be surrounded by a single (not double) thermal shield which allows the coils structurally to be located closer to the magnet's open space which reduces magnet cost by reducing the amount of coil needed for the same-strength magnetic field.
    Type: Grant
    Filed: November 13, 1995
    Date of Patent: October 8, 1996
    Assignee: General Electric Company
    Inventors: Evangelos T. Laskaris, Bizhan Dorri, Robert A. Ackermann
  • Patent number: 5552211
    Abstract: A superconductive lead assembly for a superconductive device (e.g., magnet) cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end flexibly, dielectrically, and thermally connected to the first stage and a second end flexibly, dielectrically, and thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in general surrounding compressive contact with the first ceramic superconductive lead, and a rigid support tube generally surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connectable to the second stage.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: September 3, 1996
    Assignee: General Electric Company
    Inventors: Robert A. Ackermann, Kenneth G. Herd, Evangelos T. Laskaris, Richard A. Ranze
  • Patent number: 5552372
    Abstract: A superconductive lead assembly for a superconductive device (e.g., magnet) cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end flexibly, dielectrically, and thermally connected to the first stage and a second end flexibly, dielectrically, and thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in general surrounding compressive contact with the first ceramic superconductive lead, and a rigid support tube generally surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connectable to the second stage.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: September 3, 1996
    Assignee: General Electric Company
    Inventors: Robert A. Ackermann, Kenneth G. Herd, Evangelos T. Laskaris, Richard A. Ranze
  • Patent number: 5513498
    Abstract: A cryogenic cooling system includes a cryocooler coldhead having a cold stage. A gas circulator has a low pressure input orifice and a high pressure output orifice, and a valve has a primary port and a secondary port. The valve makes and switches fluid connections between the valve's primary and secondary ports and the gas circulator's input and output orifices. A heat exchanger has a primary portion and a secondary portion each in thermal contact with the cold stage. The primary (secondary) regenerator is positioned between the primary (secondary) port of the valve and the primary (secondary) portion of the heat exchanger. A coolant flow path has a first end in fluid communication with the heat exchanger's primary portion and a second end in fluid communication with the heat exchanger's secondary portion. The coolant flow path may be placed in thermal contact with a superconductive device.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: May 7, 1996
    Assignee: General Electric Company
    Inventors: Robert A. Ackermann, Kenneth G. Herd
  • Patent number: 5446433
    Abstract: A superconductive magnet having a superconductive coil located within a thermal shield located within a vacuum enclosure. A cryocooler coldhead's first stage is in solid-conductive thermal contact with the thermal shield, and its second stage is in solid-conductive thermal contact with the superconductive coil. A magnet re-entrant support assembly includes an outer support cylinder located between the vacuum enclosure and the thermal shield and includes an inner support cylinder located between the thermal shield and the superconductive coil. The outer support cylinder's first end is rigidly connected to the vacuum enclosure, and its second end is rigidly connected to the thermal shield. The inner support cylinder's first terminus is rigidly connected to the thermal shield near the outer support cylinder's second end, and its second terminus is located longitudinally between the outer support cylinder's first and second ends and is rigidly connected to the superconductive coil.
    Type: Grant
    Filed: September 21, 1994
    Date of Patent: August 29, 1995
    Assignee: General Electric Company
    Inventors: Evangelos T. Laskaris, Constantinos Minas, Robert A. Ackermann
  • Patent number: 5257915
    Abstract: This invention relates to linear motor compressors which operate without the use of oil. Such structures of this type, generally, provide a highly reliable oil-free compressor for use with cryogenic refrigeration equipment so as to attain unattended, continuous operation without maintenance over extended periods of time.
    Type: Grant
    Filed: April 3, 1992
    Date of Patent: November 2, 1993
    Assignee: General Electric Company
    Inventors: Evangelos T. Laskaris, Robert A. Ackermann
  • Patent number: 5133800
    Abstract: Materials for cryogenic refrigerator regenerators are formed by a high yield spark erosion cell. The materials are made of erbium or dysprosium and are spherical shaped. The spheres have a diameter range of 150 .mu.m to 400 .mu.m with a packing factor of at least 50%. The materials are made by disposing chunks of a starting material into a liquid dielectric in a spark chamber, agitating the chunks, impressing a spark voltage in order to cause melting of the chunks and formation of spherical particles, and collecting the particles at the bottom of the spark chamber. The particles may then be gathered, dried, and separated.
    Type: Grant
    Filed: March 11, 1991
    Date of Patent: July 28, 1992
    Assignee: General Electric Company
    Inventors: Robert A. Ackermann, John L. Walter
  • Patent number: 5113165
    Abstract: A superconductive magnet having at least one superconductive coil is provided. A thermal radiation shield is situated inside a vacuum vessel and the thermal radiation shield encloses the superconductive coil. A thermal diode is provided for thermally linking the superconductive coil and the thermal radiation shield when the thermal radiation shield is colder than the superconductive coil.
    Type: Grant
    Filed: August 3, 1990
    Date of Patent: May 12, 1992
    Assignee: General Electric Company
    Inventor: Robert A. Ackermann
  • Patent number: D381203
    Type: Grant
    Filed: February 13, 1996
    Date of Patent: July 22, 1997
    Assignee: Rehrig-Pacific Company, Inc.
    Inventors: Jeffrey Robert Ackermann, William Patrick Apps, Glenn McCord Phillips