Patents by Inventor Robert A. Barrowcliff

Robert A. Barrowcliff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060099758
    Abstract: A method is provided for forming iridium oxide (IrOx) nanotubes. The method comprises: providing a substrate; introducing a (methylcyclopentadienyl)(1,5-cyclooctadiene)iridium(I) precursor; introducing oxygen as a precursor reaction gas; establishing a final pressure in the range of 1 to 50 Torr; establishing a substrate, or chamber temperature in the range of 200 to 500 degrees C.; and using a metalorganic chemical vapor deposition (MOCVD) process, growing IrOx hollow nanotubes from the substrate surface. Typically, the (methylcyclopentadienyl)(1,5-cyclooctadiene)iridium(I) precursor is initially heated in an ampule to a first temperature in the range of 60 to 90 degrees C., and the first temperature is maintained in the transport line introducing the precursor. The precursor may be mixed with an inert carrier gas such as Ar, or the oxygen precursor reaction gas may be used as the carrier.
    Type: Application
    Filed: October 21, 2004
    Publication date: May 11, 2006
    Inventors: Fengyan Zhang, Robert Barrowcliff, Gregory Stecker, Sheng Hsu
  • Publication number: 20060088993
    Abstract: A method is provided for patterning iridium oxide (IrOx) nanostructures. The method comprises: forming a substrate first region adjacent a second region; growing IrOx nanostructures from a continuous IrOx film overlying the first region; simultaneously growing IrOx nanostructures from a non-continuous IrOx film overlying the second region; selectively etching areas of the second region exposed by the non-continuous IrOx film; and, lifting off the IrOx nanostructures overlying the second region. Typically, the first region is formed from a first material and the second region from a second material, different than the first material. For example, the first material can be a refractory metal, or refractory metal oxide. The second material can be SiOx. The step of selectively etching areas of the second region exposed by the non-continuous IrOx film includes exposing the substrate to an etchant that is more reactive with the second material than the IrOx.
    Type: Application
    Filed: December 15, 2004
    Publication date: April 27, 2006
    Inventors: Fengyan Zhang, Gregory Stecker, Robert Barrowcliff, Sheng Hsu
  • Publication number: 20060086314
    Abstract: Iridium oxide (IrOx) nanowires and a method forming the nanowires are provided. The method comprises: providing a growth promotion film with non-continuous surfaces, having a thickness in the range of 0.5 to 5 nanometers (nm), and made from a material such as Ti, Co, Ni, Au, Ta, polycrystalline silicon (poly-Si), SiGe, Pt, Ir, TiN, or TaN; establishing a substrate temperature in the range of 200 to 600 degrees C.; introducing oxygen as a precursor reaction gas; introducing a (methylcyclopentadienyl)(1,5-cyclooctadiene)iridium(I) precursor; using a metalorganic chemical vapor deposition (MOCVD) process, growing IrOx nanowires from the growth promotion film surfaces. The IrOx nanowires have a diameter in the range of 100 to 1000 ?, a length in the range of 1000 ? to 2 microns, an aspect ratio (length to width) of greater than 50:1. Further, the nanowires include single-crystal nanowire cores covered with an amorphous layer having a thickness of less than 10 ?.
    Type: Application
    Filed: October 21, 2004
    Publication date: April 27, 2006
    Inventors: Fengyan Zhang, Robert Barrowcliff, Sheng Hsu
  • Patent number: 7022621
    Abstract: A method is provided for patterning iridium oxide (IrOx) nanostructures. The method comprises: forming a substrate first region adjacent a second region; growing IrOx nanostructures from a continuous IrOx film overlying the first region; simultaneously growing IrOx nanostructures from a non-continuous IrOx film overlying the second region; selectively etching areas of the second region exposed by the non-continuous IrOx film; and, lifting off the IrOx nanostructures overlying the second region. Typically, the first region is formed from a first material and the second region from a second material, different than the first material. For example, the first material can be a refractory metal, or refractory metal oxide. The second material can be SiOx. The step of selectively etching areas of the second region exposed by the non-continuous IrOx film includes exposing the substrate to an etchant that is more reactive with the second material than the IrOx.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: April 4, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Fengyan Zhang, Gregory M. Stecker, Robert A. Barrowcliff, Sheng Teng Hsu
  • Patent number: 6849467
    Abstract: A method of forming an H2 passivation layer in an FeRAM includes preparing a silicon substrate; depositing a layer of TiOx thin film, where 0<x<2, on a damascene structure; plasma space etching of the Ti or TiOx thin film to form a TiOx sidewall; annealing the TiOx side wall thin film form a TiO2 thin film; depositing a layer of ferroelectric material; and metallizing the structure to form a FeRAM.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: February 1, 2005
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Wei Pan, Robert A. Barrowcliff, David R. Evans, Sheng Teng Hsu
  • Publication number: 20050014296
    Abstract: A method of forming an H2 passivation layer in an FeRAM includes preparing a silicon substrate; depositing a layer of TiOx thin film, where 0<x<2, on a damascene structure; plasma space etching of the Ti or TiOx thin film to form a TiOx sidewall; annealing the TiOx side wall thin film to form a TiO2 thin film; depositing a layer of ferroelectric material; and metallizing the structure to form a FeRAM.
    Type: Application
    Filed: July 16, 2003
    Publication date: January 20, 2005
    Inventors: Tingkai Li, Wei Pan, Robert Barrowcliff, David Evans, Sheng Hsu
  • Publication number: 20040203234
    Abstract: A method of forming a tungsten nitride thin film in an integrated circuit includes preparing a silicon substrate on a silicon wafer and placing the silicon wafer in a heatable chuck in a CVD vacuum chamber; placing a known quantity of a tungsten source in a variable-temperature bubbler to provide a gaseous tungsten source; setting the variable-temperature bubbler to a predetermined temperature; passing a carrier gas through the variable-temperature bubbler and carrying the gaseous tungsten source with the carrier gas into the CVD vacuum chamber; introducing a nitrogen-containing reactant gas into the CVD vacuum chamber; reacting the gaseous tungsten source and the nitrogen-containing reactant gas above the surface of the silicon wafer in a deposition process to deposit a WxNy thin film on the surface of the silicon wafer; and completing the integrated circuit containing the WxNy thin film.
    Type: Application
    Filed: April 9, 2003
    Publication date: October 14, 2004
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Wei Pan, Robert Barrowcliff, David R Evans, Sheng Teng Hsu
  • Patent number: 6090963
    Abstract: A metal(hfac), alkene ligand precursor has been provided. The alkene ligand includes double bonded carbon atoms, with first and second bonds to the first carbon atom, and third and fourth bonds to the second carbon atom. The first, second, third, and fourth bonds are selected from a the group consisting of H, C.sub.1 to C.sub.8 alkyl, C.sub.1 to C.sub.8 haloalkyl, and C.sub.1 to C.sub.8 alkoxyl. As a general class, these precursors are capable of high metal deposition rates and high volatility, despite being stable in the liquid phase at low temperatures. Copper deposited with this precursor has low resistivity and high adhesive characteristics. A synthesis method has been provided which produces a high yield of the above-described alkene ligand class of metal precursors.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: July 18, 2000
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Tue Nguyen, Robert Barrowcliff, David Russell Evans, Sheng Teng Hsu