Patents by Inventor Robert A. Briggs

Robert A. Briggs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11030797
    Abstract: Systems and methods for processing primitive fragments in a rasterization phase of a graphics processing system wherein a rendering space is subdivided into a plurality of tiles. The method includes receiving a plurality of primitive fragments, each primitive fragment corresponding to a pixel sample in a tile; determining whether a depth buffer read is to be performed for hidden surface removal processing of one or more of the primitive fragments; sorting the primitive fragments into a priority queue and a non-priority queue based on the depth buffer read determinations; and performing hidden surface removal processing on the primitive fragments in the priority and non-priority queues wherein priority is given to the primitive fragments in the priority queue.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: June 8, 2021
    Assignee: Imagination Technologies Limited
    Inventors: Robert Brigg, Lorenzo Belli
  • Publication number: 20210164074
    Abstract: A titanium alloy for additive manufacturing that includes 5.5 to 6.5 wt % aluminum (Al); 3.0 to 4.5 wt % vanadium (V); 1.0 to 2.0 wt % molybdenum (Mo); 0.3 to 1.5 wt % iron (Fe); 0.3 to 1.5 wt % chromium (Cr); 0.05 to 0.5 wt % zirconium (Zr); 0.2 to 0.3 wt % oxygen (O); maximum of 0.05 wt % nitrogen (N); maximum of 0.08 wt % carbon (C); maximum of 0.25 wt % silicon (Si); and balance titanium, wherein a value of an aluminum structural equivalent [Al]eq ranges from 7.5 to 9.5 wt %, and is defined by the following equation: [Al]eq=[Al]+[O]×10+[Zr]/6, and wherein a value of a molybdenum structural equivalent [Mo]eq ranges from 6.0 to 8.5 wt %, and is defined by the following equation: [Mo]eq=[Mo]+[V]/1.5 +[Cr]×1.25+[Fe]×2.5.
    Type: Application
    Filed: August 31, 2018
    Publication date: June 3, 2021
    Applicants: The Boeing Company, VSMPO-AVISMA Corporation
    Inventors: Natalia Mitropolskaya, Robert Briggs, Catherine Parrish, Arash Ghabchi, Matthew Crill, Michael Leder, Igor Puzakov, Alexey Zaitsev, Natalia Tarenkova
  • Publication number: 20210110510
    Abstract: Tiling engines and methods for use in a graphics processing system for hierarchically tiling a plurality of primitives.
    Type: Application
    Filed: September 21, 2020
    Publication date: April 15, 2021
    Inventors: Robert Brigg, Lorenzo Belli
  • Publication number: 20200402292
    Abstract: Methods and coarse depth test logic perform coarse depth testing in a graphics processing system in which a rendering space is divided into a plurality of tiles. A depth range for a tile is obtained, which identifies a depth range based on primitives previously processed for the tile. A determination is made based on the depth range for the tile as to whether all or a portion of a primitive is hidden in the tile. If at least a portion of the primitive is not hidden in the tile, a determination is as to whether the primitive, or one or more primitive fragments thereof has better depth than the primitives previously processed for the tile according to a depth compare mode. If so, the primitive or the primitive fragment is identified as not requiring a read of a depth buffer to perform full resolution depth testing, such that a determination that at least a portion of the primitive is hidden in the tile causes full resolution depth testing not to be performed on at least that portion of the primitive.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Inventors: Lorenzo Belli, Robert Brigg
  • Publication number: 20200402297
    Abstract: Systems and methods for processing primitive fragments in a rasterization phase of a graphics processing system wherein a rendering space is subdivided into a plurality of tiles. The method includes receiving a plurality of primitive fragments, each primitive fragment corresponding to a pixel sample in a tile; determining whether a depth buffer read is to be performed for hidden surface removal processing of one or more of the primitive fragments; sorting the primitive fragments into a priority queue and a non-priority queue based on the depth buffer read determinations; and performing hidden surface removal processing on the primitive fragments in the priority and non-priority queues wherein priority is given to the primitive fragments in the priority queue.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Inventors: Robert Brigg, Lorenzo Belli
  • Publication number: 20200375481
    Abstract: Provided are a system and method of generating an aggregated stability map of one or more rotational sources associated with a heart rhythm disorder. In accordance therewith, a plurality of rotational area profile maps is accessed for a plurality of analysis intervals. Each of the profile maps includes rotation intensity values for a plurality of locations associated with rotation of the one or more rotational sources. An aggregated stability map is generated based on the profile maps, wherein the stability map includes a plurality of locations. Each location includes a rotation intensity value based at least on a filter number of highest rotation intensity values from corresponding locations of the profile maps, the filter number being automatically determined from a plurality of filter numbers such that the plurality of profile maps as filtered includes a predetermined number of rotation intensity values in excess of a threshold intensity value.
    Type: Application
    Filed: August 21, 2020
    Publication date: December 3, 2020
    Inventors: William Robert Macneil, Carey Robert Briggs, Christopher Todd Schuster, Heather A. Drury
  • Patent number: 10765329
    Abstract: Provided is a system and method of generating an aggregated stability map of one or more rotational sources associated with a heart rhythm disorder. In accordance therewith, a plurality of rotational area profile maps is accessed for a plurality of analysis intervals. Each of the rotational area profile maps includes rotation intensity values for a plurality of locations associated with rotation of the one or more rotational sources. Thereafter, an aggregated stability map is generated map based on the plurality of rotational area profile maps, wherein the aggregated stability map includes a plurality of locations. Each location includes a rotation intensity value based at least on a filter level of highest rotation intensity values for that location from corresponding locations of the plurality of rotational area profile maps.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: September 8, 2020
    Assignee: Topera, Inc.
    Inventors: William Robert Macneil, Carey Robert Briggs, Christopher Todd Schuster, Heather A. Drury
  • Publication number: 20200242725
    Abstract: Memories and methods for storing untransformed primitive blocks of variable size in a memory structure of a graphics processing system, the untransformed primitive blocks having been generated by geometry processing logic of the graphics processing system. The method includes: storing an untransformed primitive block in the memory structure, and increasing, by a predetermined amount, a current total amount of memory allocated for storing untransformed primitive blocks; determining an unused amount of the current total amount of memory allocated for storing untransformed primitive blocks; receiving a new untransformed primitive block for storing in the memory structure, and determining whether a size of the new untransformed primitive block is less than or equal to the unused amount; and if it is determined that the size of the new untransformed primitive block is less than or equal to the unused amount, storing the new untransformed primitive block in the memory structure.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 30, 2020
    Inventor: Robert Brigg
  • Publication number: 20200242828
    Abstract: A graphics processing system for generating a rendering output includes geometry processing logic and rasterization logic. The geometry processing logic includes first transformation logic configured to transform a plurality of untransformed primitives into a plurality of transformed primitives, the first transformation logic configured to implement one or more expansion transformation stages which generate one or more sub-primitives; a primitive block generator configured to: divide the plurality of transformed primitives into a plurality of groups; and generate an untransformed primitive block for each group comprising (i) information identifying the untransformed primitives related to the transformed primitives in the group; and (ii) an expansion transformation stage mask for at least one of the one or more expansion transformation stages that indicates the sub-primitives generated for the untransformed primitives in that untransformed primitive block that are to be used in generating the rendering output.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 30, 2020
    Inventors: Robert Brigg, John Howson, Xile Yang
  • Publication number: 20200202484
    Abstract: A cache for use in a tile-based rendering graphics processing system for storing transformed primitive blocks, the graphics processing system having a rendering space sub-divided into a plurality of tiles to which primitives can be associated, the graphics processing system comprising rasterization logic that rasterizes primitives on a per tile basis in a plurality of stages, the cache comprising: memory configured to store a plurality of transformed primitive blocks in the cache, each transformed primitive block comprising transformed geometry data for one or more primitives; control logic configured to: maintain a counter for each of the plurality of transformed primitive blocks stored in the cache that indicates a number of tiles of the plurality of tiles that are currently being processed by the rasterization logic and require access to that transformed primitive block, the counter being updated when any stage of the rasterization logic indicates a tile no longer requires access to the transformed primiti
    Type: Application
    Filed: December 21, 2019
    Publication date: June 25, 2020
    Inventors: Robert Brigg, John W. Howson, Xile Yang
  • Publication number: 20200202481
    Abstract: A graphics processing system having a rendering space divided into a plurality of tiles. The system comprises geometry processing logic and rasterization logic. The geometry processing logic is configured to generate transformed position data for each of a plurality of untransformed primitives based on untransformed geometry data associated therewith; group the plurality of untransformed primitives into a plurality of primitive blocks; and generate an untransformed display list for each tile based on the transformed position data. Each untransformed display list comprises: (i) information identifying each untransformed primitive block that comprises at least one untransformed primitive that, when transformed, falls at least partially with the tile; and (ii) for each identified untransformed primitive bock, information identifying the untransformed primitives or transformed primitives related to that untransformed primitive block relevant for rendering the tile.
    Type: Application
    Filed: December 21, 2019
    Publication date: June 25, 2020
    Inventors: Robert Brigg, Xile Yang, John W. Howson
  • Publication number: 20200202612
    Abstract: Methods and primitive block generators for generating primitive blocks in a graphics processing system. The methods comprise: receiving transformed position data for a current primitive, the transformed position data indicating a position of the current primitive in rendering space; determining a distance between the position of the current primitive and a position of a current primitive block based on the transformed position data for the current primitive; determining whether to add the current primitive to the current primitive block based on the distance and a fullness of the current primitive block; in response to determining that the current primitive is to be added to the current primitive block, adding the current primitive to the current primitive block; and in response to determining that the current primitive is not to be added to the current primitive block, flushing the current primitive block and adding the current primitive to a new current primitive block.
    Type: Application
    Filed: December 21, 2019
    Publication date: June 25, 2020
    Inventors: Xile Yang, Robert Brigg, John W. Howson
  • Publication number: 20200061384
    Abstract: An example system and method associated with identifying and treating a source of a heart rhythm disorder are disclosed. In accordance therewith, a spatial element associated with a region of the heart is selected. Progressive rotational activations or progressive focal activations are determined in relation to the selected spatial element over a period of time. The selecting and determining are repeated over multiple periods of time. A source parameter of rotation activations or focal activations is determined, wherein the source parameter indicates consistency of successive rotational activations or focal activations in relation to a portion of the region of the heart. The determining of a source parameter is repeated for multiple regions of the heart. Thereafter, representation of the source parameter is displayed for each of the multiple regions of the heart to identify a shape representing the source of the heart rhythm disorder.
    Type: Application
    Filed: September 5, 2019
    Publication date: February 27, 2020
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, TOPERA, INC.
    Inventors: Sanjiv M. Narayan, Carey Robert Briggs, Ruchir Sehra
  • Publication number: 20200004688
    Abstract: A method of managing access to a physical memory formed of n memory page frames using a set of virtual address spaces having n virtual address spaces each formed of a plurality p of contiguous memory pages. The method includes receiving a write request to write a block of data to a virtual address within a virtual address space i of the n virtual address spaces, the virtual address defined by the virtual address space i, a memory page j within that virtual address space i and an offset from the start of that memory page j; translating the virtual address to an address of the physical memory using a virtual memory table having n by p entries specifying mappings between memory pages of the virtual address spaces and memory page frames of the physical memory, wherein the physical memory address is defined by: (i) the memory page frame mapped to the memory page j as specified by the virtual memory table, and (ii) the offset of the virtual address; and writing the block of data to the physical memory address.
    Type: Application
    Filed: June 29, 2019
    Publication date: January 2, 2020
    Inventors: Robert Brigg, Lorenzo Belli
  • Patent number: 10485438
    Abstract: A system and method to target a biological rhythm disorder include processing cardiac signals via a computing device to determine a shape in a region of tissue defined by a source associated with the biological rhythm disorder that migrates spatially on or within the shape, and identifying at least one portion of the tissue proximate to the shape to enable selective modification of the at least one portion of tissue in order to terminate or alter the biological rhythm disorder.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: November 26, 2019
    Assignees: The Regents of the University of California, The United States of America as Represented by the Department of Veterans Affairs, Topera, Inc.
    Inventors: Sanjiv M. Narayan, Carey Robert Briggs
  • Patent number: 10434319
    Abstract: An example system and method associated with identifying and treating a source of a heart rhythm disorder are disclosed. In accordance therewith, a spatial element associated with a region of the heart is selected. Progressive rotational activations or progressive focal activations are determined in relation to the selected spatial element over a period of time. The selecting and determining are repeated over multiple periods of time. A source parameter of rotation activations or focal activations is determined, wherein the source parameter indicates consistency of successive rotational activations or focal activations in relation to a portion of the region of the heart. The determining of a source parameter is repeated for multiple regions of the heart. Thereafter, representation of the source parameter is displayed for each of the multiple regions of the heart to identify a shape representing the source of the heart rhythm disorder.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: October 8, 2019
    Assignees: The Regents of the University of California, The United States of America as Represented by the Department of Veterans Affairs, Topera, Inc.
    Inventors: Sanjiv M. Narayan, Carey Robert Briggs, Ruchir Sehra
  • Patent number: 10398326
    Abstract: An example system and method associated with identifying and treating a source of a heart rhythm disorder are disclosed. In accordance with therewith, a spatial element associated with a region of the heart is selected. Progressive rotational activations or progressive focal activations are determined in relation to the selected spatial element. A plurality of indexes of progressive rotational activations or progressive focal activations over time is formed. One or more indexes are selected from the plurality of indexes that indicate consistency of the successive rotational activations or the progressive focal activations in relation to a portion of the region of the heart.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: September 3, 2019
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRE, TOPERA, INC.
    Inventors: Sanjiv Narayan, Carey Robert Briggs, Ruchir Sehra
  • Patent number: 10368764
    Abstract: A system and method to select segments of cardiac signals. Each of a plurality of segments in a first signal is correlated at a plurality of offsets to determine a highest correlation coefficient for each of the plurality of segments in the first signal. Each of a plurality of segments in a second signal is correlated at the plurality of offsets to determine a highest correlation coefficient for each of the plurality of segments in the second signal. A plurality of composite correlation coefficients is generated using highest correlation coefficients for segments of the first signal and segments of the second signal. The segments of the first and second signals are approximately contemporaneous. A set of segments including a segment from the first signal and a segment from the second signal is selected. The set is associated with a highest composite correlation coefficient from the plurality of composite correlation coefficients.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: August 6, 2019
    Assignee: Topera, Inc.
    Inventors: Carey Robert Briggs, Ruchir Sehra
  • Patent number: 10271744
    Abstract: In a system and method for identifying a driver of a source associated with a heart rhythm disorder, data are accessed from a plurality of sensors representing biological activity in the heart. A first region and a second region of the heart, which comprise the source of the heart rhythm disorder, are identified. If the first region of the heart has repeating centrifugal activation and controls the second region of the heart for at least a predetermined number of beats, the first region is identified as controlling the source of the heart rhythm disorder.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: April 30, 2019
    Assignees: The Regents of the University of California, The United States of America as Represented by the Department of Veterans Affairs, Topera, Inc.
    Inventors: Sanjiv Narayan, Carey Robert Briggs, Ruchir Sehra
  • Patent number: 10271786
    Abstract: Reconstruction of cardiac information associated with a heart rhythm disorder includes accessing a plurality of neighboring cardiac signals and eliminating far-field activations from the neighboring cardiac signals using one or more divergence criteria that define local activations, where the divergence criteria is associated with divergence among the plurality of neighboring cardiac signals. The local activations in the plurality of neighboring cardiac signals may be used to construct a clinical representation of the heart rhythm disorder.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: April 30, 2019
    Assignees: The Regents of the University of California, The United States of America as Represented by the Department of Veterans Affairs, Topera, Inc.
    Inventors: Sanjiv Narayan, Carey Robert Briggs