Patents by Inventor Robert A. Clarke

Robert A. Clarke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11738053
    Abstract: The invention relates to a method of treating chronic granulomatous disease through Hematopoietic stem cell (HSC) transplantation. The method comprises the steps of administering stem cell mobilization agent to human such that the target stem cell population migrates from host niches into the subject's blood. The target stem cells are removed from blood and administering the therapeutic stem cells to human and said therapeutic stem cells are engineered to express gp91phox. The steps are repeated multiple times i.e. at least four times. The mobilization agents used in the invention are granulocyte-colony stimulating factor and AMD3100. The method of HSC transplantation is effective in treatment of chronic granulomatous disease.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: August 29, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Senlin Li, Robert A Clark, Cang Chen, Yang Li
  • Patent number: 11097912
    Abstract: Printing devices include a printing engine and a media tray connected to a frame. The media tray is adapted to hold a stack of media supplied to the printing engine for printing. A magnetic trailing edge guide that is shaped to contact a corner of the stack of media is connected to a tether that is connected to the frame. A storage device is connected to the frame, and the storage device is shaped to accommodate the magnetic trailing edge guide. The length of the tether allows the magnetic trailing edge guide to reach the corner of the stack of media and to reach the storage device. The magnetic trailing edge guide includes a magnetic element adapted to magnetically hold to at least the media tray and the storage device.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: August 24, 2021
    Assignee: Xerox Corporation
    Inventors: Robert A. Clark, Brian R. Ford, Arthur H. Kahn
  • Patent number: 10906224
    Abstract: A method of operating an additive manufacturing system feeds solid extrusion material into a heater using a slip clutch coupled to an actuator of a mechanical driver to supply thermoplastic material into a manifold in an extruder head. The method sets a speed of the actuator so the actuator operates at a rotational speed that is slightly greater than the rotational speed of the mechanical mover. This method helps maintain the pressure of the thermoplastic material in the manifold of the extruder head in a predetermined range no matter how many nozzles are opened in the extruder head.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: February 2, 2021
    Assignee: Xerox Corporation
    Inventors: Barry P. Mandel, Peter J. Nystrom, Christopher G. Lynn, Robert A. Clark, David A. Mantell
  • Patent number: 10894411
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink. The cap and the printhead create a sealed space adjacent printhead nozzles when contacting each other. A flexible blade is positioned to contact the printhead when the printhead is not in contact with the cap. The flexible blade is adapted to fold over to spread a liquid solution on the nozzles in a first direction, and the flexible blade is adapted to remove excess amounts of the liquid solution from the nozzles in a second direction. A humidifier is connected to the cap and adapted to supply a moisture form of the liquid solution to the sealed space. A moisture sensor is connected to the cap. The humidifier is adapted to vary supply of the moisture to the sealed space based on the amount of moisture detected by the moisture sensor.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: January 19, 2021
    Assignee: Xerox Corporation
    Inventors: Michael J. Levy, Seemit Praharaj, Paul J. McConville, Jason M. LeFevre, Linn C. Hoover, Chu-heng Liu, David A. VanKouwenberg, Douglas K. Herrmann, John T. Newell, Richard A. Campbell, Ali R. Dergham, Glenn D. Batchelor, Robert A. Clark, Senthil Sivaraman
  • Patent number: 10875241
    Abstract: A three-dimensional (3-D) printer includes build and support material development stations positioned to transfer layers of build and support materials to an intermediate transfer surface. The intermediate transfer surface transfers a layer of the build and support materials to a platen each time the platen contacts the intermediate transfer surface. A sensor detects the thickness of the layer on the platen, and a mechanical planer is positioned to contact and level the layer on the platen as the platen moves past the mechanical planer. Additionally, a feedback loop is electrically connected to the sensor and the mechanical planer. The mechanical planer adjusts the amount of the build material and the support material removed from the layer based on the thickness of the layer on the platen, as determined by the sensor.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: December 29, 2020
    Assignee: Xerox Corporation
    Inventors: Robert A. Clark, Michael F. Zona, William J. Nowak, Chu-heng Liu, Jorge A. Alvarez, Paul J. McConville
  • Publication number: 20200399083
    Abstract: Printing devices include a printing engine and a media tray connected to a frame. The media tray is adapted to hold a stack of media supplied to the printing engine for printing. A magnetic trailing edge guide that is shaped to contact a corner of the stack of media is connected to a tether that is connected to the frame. A storage device is connected to the frame, and the storage device is shaped to accommodate the magnetic trailing edge guide. The length of the tether allows the magnetic trailing edge guide to reach the corner of the stack of media and to reach the storage device. The magnetic trailing edge guide includes a magnetic element adapted to magnetically hold to at least the media tray and the storage device.
    Type: Application
    Filed: June 20, 2019
    Publication date: December 24, 2020
    Applicant: Xerox Corporation
    Inventors: Robert A. Clark, Brian R. Ford, Arthur H. Kahn
  • Patent number: 10814635
    Abstract: Devices include one or more inkjet printheads, a reusable jetting sheet that is adjacent to nozzles of the printheads, support structures (e.g., drive rollers) contacting the sheet, and a cleaning station contacting the sheet. The reusable jetting sheet includes an opening, that is at least as large as the sets of nozzles, and a jetting area spaced from the opening. The support structures are adapted to move the reusable jetting sheet relative to the sets of nozzles. The inkjet printheads are adapted to eject ink from at least some of the nozzles, through the opening, to print media when the opening is positioned adjacent to the sets of nozzles, to print on print media. The inkjet printhead is further adapted to eject ink from at least some of the nozzles to the jetting area when the jetting area is positioned adjacent to the sets of nozzles to perform maintenance jetting.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: October 27, 2020
    Assignee: Xerox Corporation
    Inventors: Senthil Sivaraman, Ali R. Dergham, Richard A. Campbell, Glenn D. Batchelor, Robert A. Clark
  • Publication number: 20200306313
    Abstract: Certain embodiments are directed to compositions and methods for non-cytotoxic hematopoietic stem cell transplantation.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Inventors: Senlin LI, Robert A. CLARK, Cang CHEN
  • Publication number: 20200298573
    Abstract: Devices include one or more inkjet printheads, a reusable jetting sheet that is adjacent to nozzles of the printheads, support structures (e.g., drive rollers) contacting the sheet, and a cleaning station contacting the sheet. The reusable jetting sheet includes an opening, that is at least as large as the sets of nozzles, and a jetting area spaced from the opening. The support structures are adapted to move the reusable jetting sheet relative to the sets of nozzles. The inkjet printheads are adapted to eject ink from at least some of the nozzles, through the opening, to print media when the opening is positioned adjacent to the sets of nozzles, to print on print media. The inkjet printhead is further adapted to eject ink from at least some of the nozzles to the jetting area when the jetting area is positioned adjacent to the sets of nozzles to perform maintenance jetting.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 24, 2020
    Applicant: Xerox Corporation
    Inventors: Senthil Sivaraman, Ali R. Dergham, Richard A. Campbell, Glenn D. Batchelor, Robert A. Clark
  • Publication number: 20200254761
    Abstract: A cap is positioned to contact a printhead when the printhead is not ejecting liquid ink. The cap and the printhead create a sealed space adjacent printhead nozzles when contacting each other. A flexible blade is positioned to contact the printhead when the printhead is not in contact with the cap. The flexible blade is adapted to fold over to spread a liquid solution on the nozzles in a first direction, and the flexible blade is adapted to remove excess amounts of the liquid solution from the nozzles in a second direction. A humidifier is connected to the cap and adapted to supply a moisture form of the liquid solution to the sealed space. A moisture sensor is connected to the cap. The humidifier is adapted to vary supply of the moisture to the sealed space based on the amount of moisture detected by the moisture sensor.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Applicant: Xerox Corporation
    Inventors: Michael J. Levy, Seemit Praharaj, Paul J. McConville, Jason M. LeFevre, Linn C. Hoover, Chu-heng Liu, David A. VanKouwenberg, Douglas K. Herrmann, John T. Newell, Richard A. Campbell, Ali R. Dergham, Glenn D. Batchelor, Robert A. Clark, Senthil Sivaraman
  • Publication number: 20200224165
    Abstract: Certain embodiments are directed to compositions and methods for non-cytotoxic hematopoietic stem cell transplantation.
    Type: Application
    Filed: July 7, 2017
    Publication date: July 16, 2020
    Inventors: Senlin LI, Robert A CLARK, Cang CHEN, Michael J GUDERYON
  • Publication number: 20200207000
    Abstract: A method of operating an additive manufacturing system feeds solid extrusion material into a heater using a slip clutch coupled to an actuator of a mechanical driver to supply thermoplastic material into a manifold in an extruder head. The method sets a speed of the actuator so the actuator operates at a rotational speed that is slightly greater than the rotational speed of the mechanical mover. This method helps maintain the pressure of the thermoplastic material in the manifold of the extruder head in a predetermined range no matter how many nozzles are opened in the extruder head.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 2, 2020
    Inventors: Barry P. Mandel, Peter J. Nystrom, Christopher G. Lynn, Robert A. Clark, David A. Mantell
  • Patent number: 10688717
    Abstract: A 3-D printer includes build and support material development stations that electrostatically transfer build material and support material to an ITB. The ITB transfers a layer of build and support material to a platen each time the platen contacts one of the layers on the ITB, to successively form a freestanding stack of the layers on the platen. A sensor is positioned to generate a topographic measurement of the layer on the platen, and an aerosol applicator is positioned to propel build and support material on to the layer on the platen. The aerosol applicator controls the build and support material being propelled, based on the topographic measurement from the sensor through a feedback loop, to adjust the amount and location of the build material and the support material propelled on to the layer, and thereby control the flatness of surface topology of the layers in the freestanding stack on the platen.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: June 23, 2020
    Assignee: Xerox Corporation
    Inventors: William J. Nowak, Jorge A. Alvarez, Robert A. Clark, Michael F. Zona, Chu-heng Liu, Paul J. McConville
  • Patent number: 10682796
    Abstract: An additive manufacturing system includes a slip clutch coupled to an actuator of a mechanical driver that feeds solid extrusion material into a heater for supplying thermoplastic material to a manifold in an extruder head. A speed of the actuator can be set to enable the actuator to operate at a rotational speed that is slightly greater than the rotational speed of the mechanical mover. This configuration enables the pressure of the thermoplastic material in the manifold of the extruder head to be in a predetermined range no matter how many nozzles are opened in the extruder head.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 16, 2020
    Assignee: Xerox Corporation
    Inventors: Barry P. Mandel, Peter J. Nystrom, Christopher G. Lynn, Robert A. Clark, David A. Mantell
  • Publication number: 20190217535
    Abstract: A method of additive manufacturing includes forming a plurality of build layers, each of the plurality of build layers formed by transferring a first build material having a first particle size to form a first build material and transferring a second build material on the first build material to form one of the plurality of build layers, a particle size of the second build material is smaller than the first build material and each transfer step is performed by a xerographic engine. Each transfer step is involves transfer to a conveyor which can take the form of a belt or drum.
    Type: Application
    Filed: March 27, 2019
    Publication date: July 18, 2019
    Inventors: Michael F. Zona, William J. Nowak, Jorge A. Alvarez, Paul J. McConville, Robert A. Clark
  • Publication number: 20190210279
    Abstract: A three-dimensional (3-D) printer includes build and support material development stations positioned to transfer layers of build and support materials to an intermediate transfer surface. The intermediate transfer surface transfers a layer of the build and support materials to a platen each time the platen contacts the intermediate transfer surface. A sensor detects the thickness of the layer on the platen, and a mechanical planer is positioned to contact and level the layer on the platen as the platen moves past the mechanical planer. Additionally, a feedback loop is electrically connected to the sensor and the mechanical planer. The mechanical planer adjusts the amount of the build material and the support material removed from the layer based on the thickness of the layer on the platen, as determined by the sensor.
    Type: Application
    Filed: March 14, 2019
    Publication date: July 11, 2019
    Applicant: Xerox Corporation
    Inventors: Robert A. Clark, Michael F. Zona, William J. Nowak, Chu-heng Liu, Jorge A. Alvarez, Paul J. McConville
  • Publication number: 20190201449
    Abstract: Certain embodiments are directed to compositions and methods for non-cytotoxic hematopoietic stem cell transplantation for the treatment of chronic granulomatous disease
    Type: Application
    Filed: September 1, 2017
    Publication date: July 4, 2019
    Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Senlin LI, Robert A. CLARK, Cang CHEN, Yang LI
  • Patent number: 10293547
    Abstract: A three-dimensional (3-D) printer includes build and support material development stations positioned to transfer layers of build and support materials to an intermediate transfer surface. The intermediate transfer surface transfers a layer of the build and support materials to a platen each time the platen contacts the intermediate transfer surface. A sensor detects the thickness of the layer on the platen, and a mechanical planer is positioned to contact and level the layer on the platen as the platen moves past the mechanical planer. Additionally, a feedback loop is electrically connected to the sensor and the mechanical planer. The mechanical planer adjusts the amount of the build material and the support material removed from the layer based on the thickness of the layer on the platen, as determined by the sensor.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: May 21, 2019
    Assignee: Xerox Corporation
    Inventors: Robert A. Clark, Michael F. Zona, William J. Nowak, Chu-heng Liu, Jorge A. Alvarez, Paul J. McConville
  • Patent number: 10245803
    Abstract: An apparatus is disclosed that includes a computer operated cutting and creasing tool configured to move only in an X direction during use, a cutting and creasing platform having an elastically deformable creasing portion configured to support a sheet of media during contact with a creasing tip and a non-deformable cutting portion configured to support the sheet during contact with a cutting blade, and a positioner configured to draw the sheet of media along the cutting and creasing platform during cutting and creasing. Methods of making and using the apparatus also are disclosed.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 2, 2019
    Assignee: Xerox Corporation
    Inventors: Robert A. Clark, William J. Nowak, William J. Hannaway
  • Patent number: 10183443
    Abstract: 3-D printers include an intermediate transfer surface that transfers a layer of material to a platen each time the platen contacts the intermediate transfer surface to successively form a freestanding stack of layers of the material on the platen. A sensor detects the thickness of the layer on the platen after a fusing station fuses the layer. A feedback loop is electrically connected to the sensor and a development station (that includes a photoreceptor, a charging station providing a static charge to the photoreceptor, a laser device exposing the photoreceptor, and a development device supplying the material to the photoreceptor). The development station adjusts the development bias of the development device, based on a layer thickness measurement from the sensor through the feedback loop, to control the thickness of subsequent ones of the layers transferred from the intermediate transfer surface to the freestanding stack on the platen.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: January 22, 2019
    Assignee: Xerox Corporation
    Inventors: Jorge A. Alvarez, Michael F. Zona, William J. Nowak, Robert A. Clark, Chu-heng Liu, Paul J. McConville