Patents by Inventor Robert A. Compton

Robert A. Compton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940374
    Abstract: A continuously tunable radio frequency (RF) sensor system is provided. The system includes a pump laser system that includes first and second pump lasers, at least one frequency modulator to modulate frequencies of first and second laser light from the pump lasers to first and second select frequencies, a switch system to selectively pass one of the first and second laser light, an amplifier to amplify the passed laser light, a frequency doubler to double the frequency of the amplified laser light to generate pump light. A laser source lock system is in communication with the pump laser system to ensure a frequency of the pump light is referenced to atoms in a vapor cell and provide a probe light. The pump light and probe light are transmitted through the vapor cell. A detector measures the probe light that passed through the vapor cell.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: March 26, 2024
    Assignee: Honeywell International Inc.
    Inventors: Karl D. Nelson, Matthew Wade Puckett, Neal Eldrich Solmeyer, Robert Compton
  • Publication number: 20240085182
    Abstract: A system and method for magnetic navigation are provided. The system comprises a navigation system for a vehicle, at least one processor operatively coupled with the navigation system, and a magnetic navigation module operatively coupled with the processor. The magnetic navigation module including instructions, executable by the processor, to perform a method comprising selecting latitude, longitude, and altitude ranges for the vehicle that is expected to travel in a region of interest; obtaining one or more magnetic anomaly maps for the region of interest; choosing a base Earth-centered, Earth-fixed (ECEF) plane and coordinates for the one or more magnetic anomaly maps; constructing an integration mesh on the base ECEF plane; and performing a Strakhov iteration process on the integration mesh to compute values of magnetic anomalies on a base source. The method then computes an estimated magnetic anomaly at a given point in space using alternative computation approaches.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 14, 2024
    Applicant: Honeywell International Inc.
    Inventors: Blaise Morton, Paul Samanant, Trevor Keith Stephens, Robert Compton
  • Patent number: 11919234
    Abstract: A three-dimensional printing system including at least one positioning mechanism, and at least one end effector movably connected to the at least one positioning mechanism. The at least one end effector includes at least one mixing head configured to dispense a material, and at least one subtractive tool configured to subtract at least a portion of the material such that a desired design is achieved.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: March 5, 2024
    Assignee: Gannett Peak Partners LLC
    Inventors: James Eric Compton, Casey Roberts, Ben Steinhauer, Kaleb Steinhauer, Daniel Holman
  • Publication number: 20230263553
    Abstract: Bone structure coupling devices and methods are provided herein. An example method includes positioning a tubular retraction guide body into a patient, the tubular retraction guide body having two prongs that are positioned in a joint between two adjacent bone structures, creating a hemispherical groove on each of the two adjacent bone structures using a drill bit passed through the tubular retraction guide body, incising out the hemispherical grooves with a broach passed through the tubular retraction guide body, and inserting a graft body having a generally rectangular cross sectional area into the angular grooves to couple the two adjacent bone structures together.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 24, 2023
    Inventors: Robert A. Compton, Mark Billy Willits
  • Patent number: 11672998
    Abstract: Encased magnetic bone growth stimulating devices and methods of use are provided herein. An example device includes a magnet and a biocompatible means for enclosing the magnet. The biocompatible means for enclosing the magnet further comprises a means for releasably coupling with the medical implant and a means for coupling the enclosing means to an implantable medical device.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: June 13, 2023
    Inventors: Robert A Compton, Nicholas Michael Cordaro, Robert Alex Hirschl
  • Patent number: 11666362
    Abstract: Bone structure coupling devices and methods are provided herein. An example method includes positioning a tubular retraction guide body into a patient, the tubular retraction guide body having two prongs that are positioned in a joint between two adjacent bone structures, creating a hemispherical groove on each of the two adjacent bone structures using a drill bit passed through the tubular retraction guide body, incising out the hemispherical grooves with a broach passed through the tubular retraction guide body, and inserting a graft body having a generally rectangular cross sectional area into the angular grooves to couple the two adjacent bone structures together.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: June 6, 2023
    Assignee: Med Device IP, LLC
    Inventors: Robert A. Compton, Mark Billy Willits
  • Publication number: 20220276293
    Abstract: A sensor system comprises a laser source that emits a pump beam at a first wavelength and a probe beam at a second wavelength, and an optical means for receiving the pump and probe beams. The optical means is operative to generate a plurality of light beams, each having a different frequency, from the pump and probe beams. One or more cells receive the light beams from the optical means and allow passage of the light beams therethrough, with the cells containing alkali atoms. A dichroic filter is configured to receive the light beams from the cells. The dichroic filter separates pump beam light and probe beam light from the light beams. A detector array receives the probe beam light from the dichroic filter. The detector array includes a two-dimensional array of photosensors that map out transmission of respective light beams corresponding to the probe beam light through the cells.
    Type: Application
    Filed: June 17, 2021
    Publication date: September 1, 2022
    Applicant: Honeywell International Inc.
    Inventors: Robert Compton, Karl D. Nelson, Neal Eldrich Solmeyer, Matthew Wade Puckett
  • Publication number: 20220276615
    Abstract: A thermal metamaterial device comprises at least one MEMS thermal switch, comprising a substrate layer including a first material having a first thermal conductivity, and a thermal bus over a first portion of the substrate layer. The thermal bus includes a second material having a second thermal conductivity higher than the first thermal conductivity. An insulator layer is over a second portion of the substrate layer and includes a third material that is different from the first and second materials. A thermal pad is supported by a first portion of the insulator layer, the thermal pad including the second material and having an overhang portion located over a portion of the thermal bus. When a voltage is applied to the thermal pad, an electrostatic interaction occurs to cause a deflection of the overhang portion toward the thermal bus, thereby providing thermal conductivity between the thermal pad and the thermal bus.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Applicant: Honeywell International Inc.
    Inventors: Robert Compton, Chad Fertig, Jeffrey James Kriz
  • Publication number: 20220228972
    Abstract: A continuously tunable radio frequency (RF) sensor system is provided. The system includes a pump laser system that includes first and second pump lasers, at least one frequency modulator to modulate frequencies of first and second laser light from the pump lasers to first and second select frequencies, a switch system to selectively pass one of the first and second laser light, an amplifier to amplify the passed laser light, a frequency doubler to double the frequency of the amplified laser light to generate pump light. A laser source lock system is in communication with the pump laser system to ensure a frequency of the pump light is referenced to atoms in a vapor cell and provide a probe light. The pump light and probe light are transmitted through the vapor cell. A detector measures the probe light that passed through the vapor cell.
    Type: Application
    Filed: August 20, 2021
    Publication date: July 21, 2022
    Applicant: Honeywell International Inc.
    Inventors: Karl D. Nelson, Matthew Wade Puckett, Neal Eldrich Solmeyer, Robert Compton
  • Patent number: 11300639
    Abstract: Systems and embodiments for an integrated photonics tensor magnetometer are described herein. In certain embodiments, a system includes a plurality of magnetometers. The system also includes a laser carrier wafer coupled to each of the plurality of magnetometers that commonly distributes one or more lasers to each of the magnetometers in the plurality of magnetometers. Additionally, the system includes a plurality of photodetectors that detect light emitted from the laser carrier wafer and the plurality of magnetometers. Further, the system includes one or more processors that execute computer-executable instructions that cause the processor to monitor and control operation of the one or more lasers and calculate a magnetic field gradient based on the detected light from the magnetometers.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: April 12, 2022
    Assignee: Honeywell International Inc.
    Inventors: Neal Eldrich Solmeyer, Steven Tin, Matthew Wade Puckett, Robert Compton
  • Patent number: 11187530
    Abstract: In an example, an optical gimbal is described, the optical gimbal comprising: a pulse generator configured to generate at least two coherent beam splitting pulses; a first optical beam director configured to tilt the vector of the beam splitting pulses by an angle ?; an atom source configured to allow the beam splitting pulses to manipulate trapped atoms within the atom source; a processor configured to receive the angle ?, and control the pulse generator and the beam director; a detector coupled to the atom source configured to measure a final population of the atoms in different states.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: November 30, 2021
    Assignee: Honeywell International Inc.
    Inventors: Neal Eldrich Solmeyer, Karl D. Nelson, Robert Compton
  • Patent number: 11119163
    Abstract: A device includes a substrate and nanoscale fin formed from a first material, a RF emitter that emits energy in a range of radio frequencies, and a waveguide formed from a second material. The device further includes a bichromatic directional coupler configured to couple pump and probe laser light into the waveguide. The waveguide is positioned proximate to the nanoscale fin along a coupling length such that the pump laser light propagating within the waveguide is coupled into the nanoscale fin from evanescent wave overlap along the coupling length. The pump laser light causes the first material to absorb the probe laser light when energy emitted by the RF emitter is at one or more frequencies dependent on a magnetic field. The device further includes a processor configured to determine a magnetic field strength of the magnetic field based on an identification of the one or more frequencies.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: September 14, 2021
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Neal Eldrich Solmeyer, Steven Tin, Robert Compton
  • Publication number: 20210255260
    Abstract: Systems and embodiments for an integrated photonics tensor magnetometer are described herein. In certain embodiments, a system includes a plurality of magnetometers. The system also includes a laser carrier wafer coupled to each of the plurality of magnetometers that commonly distributes one or more lasers to each of the magnetometers in the plurality of magnetometers. Additionally, the system includes a plurality of photodetectors that detect light emitted from the laser carrier wafer and the plurality of magnetometers. Further, the system includes one or more processors that execute computer-executable instructions that cause the processor to monitor and control operation of the one or more lasers and calculate a magnetic field gradient based on the detected light from the magnetometers.
    Type: Application
    Filed: September 21, 2020
    Publication date: August 19, 2021
    Applicant: Honeywell International Inc.
    Inventors: Neal Eldrich Solmeyer, Steven Tin, Matthew Wade Puckett, Robert Compton
  • Publication number: 20210170187
    Abstract: Encased magnetic bone growth stimulating devices and methods of use are provided herein. An example device includes a magnet and a biocompatible means for enclosing the magnet. The biocompatible means for enclosing the magnet further comprises a means for releasably coupling with the medical implant and a means for coupling the enclosing means to an implantable medical device.
    Type: Application
    Filed: September 17, 2020
    Publication date: June 10, 2021
    Inventors: Robert A. Compton, Nicholas Michael Cordaro, Robert Alex Hirschl
  • Publication number: 20210132163
    Abstract: A device includes a substrate and nanoscale fin formed from a first material, a RF emitter that emits energy in a range of radio frequencies, and a waveguide formed from a second material. The device further includes a bichromatic directional coupler configured to couple pump and probe laser light into the waveguide. The waveguide is positioned proximate to the nanoscale fin along a coupling length such that the pump laser light propagating within the waveguide is coupled into the nanoscale fin from evanescent wave overlap along the coupling length. The pump laser light causes the first material to absorb the probe laser light when energy emitted by the RF emitter is at one or more frequencies dependent on a magnetic field. The device further includes a processor configured to determine a magnetic field strength of the magnetic field based on an identification of the one or more frequencies.
    Type: Application
    Filed: February 10, 2020
    Publication date: May 6, 2021
    Applicant: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Neal Eldrich Solmeyer, Steven Tin, Robert Compton
  • Publication number: 20210102809
    Abstract: In an example, an optical gimbal is described, the optical gimbal comprising: a pulse generator configured to generate at least two coherent beam splitting pulses; a first optical beam director configured to tilt the vector of the beam splitting pulses by an angle ?; an atom source configured to allow the beam splitting pulses to manipulate trapped atoms within the atom source; a processor configured to receive the angle ?, and control the pulse generator and the beam director; a detector coupled to the atom source configured to measure a final population of the atoms in different states.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 8, 2021
    Applicant: Honeywell International Inc.
    Inventors: Neal Eldrich Solmeyer, Karl D. Nelson, Robert Compton
  • Patent number: 10801840
    Abstract: Apparatuses and methods for a four port atomic gyroscope are disclosed. Because of its four ports, a four port atomic gyroscope has an output separate from an input so as to increase sensitivity of the atomic gyroscope. Thus, smaller changes in rotation rate around a center axis of an optical waveguide loop of the four port atomic gyroscope can be detected.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: October 13, 2020
    Assignee: Honeywell International Inc.
    Inventors: Neal Eldrich Solmeyer, Karl D. Nelson, Matthew Wade Puckett, Robert Compton
  • Patent number: 10780290
    Abstract: Encased magnetic bone growth stimulating devices and methods of use are provided herein. An example device includes a magnet and a biocompatible means for enclosing the magnet. The biocompatible means for enclosing the magnet further comprises a means for releasably coupling with the medical implant and a means for coupling the enclosing means to an implantable medical device.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: September 22, 2020
    Inventors: Robert A Compton, Nicholas Michael Cordaro, Robert Alex Hirschl
  • Patent number: 10749539
    Abstract: A chip scale atomic clock (CSAC) includes a temperature stabilized physics system and a temperature stabilized electronics circuitry electrically coupled to the temperature stabilized physics system. Atomic clocks utilize an optical signal having a frequency component. The temperature stabilization increases frequency stability. The temperature stabilized physics system includes a vapor cell and a magnetic field coil, and is enclosed in a magnetic shield. When an ambient temperature of a chip scale atomic clock increases, fluid is extended away, due to thermal expansion, from at least one reservoir towards or away from a thermally isolated subsystem in at least one of the temperature stabilized electronics circuitry and the temperature stabilized physics system.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: August 18, 2020
    Assignee: Honeywell International Inc.
    Inventors: Jeffrey James Kriz, Robert Compton
  • Publication number: 20200060733
    Abstract: Bone structure coupling devices and methods are provided herein. An example method includes positioning a tubular retraction guide body into a patient, the tubular retraction guide body having two prongs that are positioned in a joint between two adjacent bone structures, creating a hemispherical groove on each of the two adjacent bone structures using a drill bit passed through the tubular retraction guide body, incising out the hemispherical grooves with a broach passed through the tubular retraction guide body, and inserting a graft body having a generally rectangular cross sectional area into the angular grooves to couple the two adjacent bone structures together.
    Type: Application
    Filed: March 1, 2019
    Publication date: February 27, 2020
    Inventors: Robert A. Compton, Mark Billy Willits