Patents by Inventor Robert A. Darling

Robert A. Darling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7828940
    Abstract: An onsite chemistry air filtration system to remove gaseous contaminants from air is disclosed. The onsite chemistry air filtration system of the present invention comprises: a conventional particulate filtration section, a photochemical filtration section, a static gas phase filtration section and a catalytic filtration section. The conventional particulate filtration section captures solids and condensables. In the photochemical filtration section, UV lamps generate bio-destruction and surface photochemical activity on a semiconductor catalyst material, provide a radiation source to irradiate airborne contaminant molecules and to energize their states to promote reactions and generate airborne ozone and radicals. In the static gas phase filtration section, gas phase filtration media is used to capture contaminants, concentrate them in a relatively confined space and allow airborne generated chemistries to concentrate and react in-situ, thereby creating a regeneration effect on the media.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: November 9, 2010
    Inventors: Jeffrey L. Roseberry, Robert A. Darling
  • Publication number: 20100086436
    Abstract: An onsite chemistry air filtration system to remove gaseous contaminants from air is disclosed. The onsite chemistry air filtration system of the present invention comprises: a conventional particulate filtration section, a photochemical filtration section, a static gas phase filtration section and a catalytic filtration section. The conventional particulate filtration section captures solids and condensables. In the photochemical filtration section, UV lamps generate bio-destruction and surface photochemical activity on a semiconductor catalyst material, provide a radiation source to irradiate airborne contaminant molecules and to energize their states to promote reactions and generate airborne ozone and radicals. In the static gas phase filtration section, gas phase filtration media is used to capture contaminants, concentrate them in a relatively confined space and allow airborne generated chemistries to concentrate and react in-situ, thereby creating a regeneration effect on the media.
    Type: Application
    Filed: December 10, 2009
    Publication date: April 8, 2010
    Inventors: Jeffrey L. Roseberry, Robert A. Darling
  • Patent number: 7651555
    Abstract: An onsite chemistry air filtration system to remove gaseous contaminants from air is disclosed. The onsite chemistry air filtration system of the present invention comprises: a conventional particulate filtration section, a photochemical filtration section, a static gas phase filtration section and a catalytic filtration section. The conventional particulate filtration section captures solids and condensables. In the photochemical filtration section, UV lamps generate bio-destruction and surface photochemical activity on a semiconductor catalyst material, provide a radiation source to irradiate airborne contaminant molecules and to energize their states to promote reactions and generate airborne ozone and radicals. In the static gas phase filtration section, gas phase filtration media is used to capture contaminants, concentrate them in a relatively confined space and allow airborne generated chemistries to concentrate and react in-situ, thereby creating a regeneration effect on the media.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: January 26, 2010
    Inventors: Jeffrey L. Roseberry, Robert A. Darling
  • Patent number: 7585346
    Abstract: A media holding module to hold various granular and pelletized gas phase filtration media for filtering air. The module is comprised of two solid side plates, and a perforated end panel and four perforated wall panels disposed between the side plates. The perforated wall panels are arranged in a generally ā€œVā€-shaped configuration. The interior wall panels are contoured at the module inlet to provide aerodynamic airflow. Additionally, the interior wall panels are perforated across their entire surface areas to allow for airflow access to all filtration media in the filtration media beds. The compartment created by the wall panels may be subdivided to form sub-compartments capable of holding discrete beds of filtration media in series. The module's support members are located outside of the air stream to avoid airflow resistance and turbulence. The module further includes a flexible, reversible sealing system for sealing the module in the module housing in various configurations while preventing air bypass.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: September 8, 2009
    Inventors: Jeffrey L. Roseberry, Robert A. Darling