Patents by Inventor Robert A. Gagliano

Robert A. Gagliano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230211293
    Abstract: A CMS membrane module includes plurality of hollow fiber CMS membranes that are enclosed within an open cylindrical shell whose ends are embedded in tubesheets. The shell is concentrically disposed within an open cylindrical pressure vessel whose open ends are covered by and secured by end caps. The shell includes a feed fluid inlet formed therein between the tubesheets and a retentate outlet in between one of the tubesheets and an adjacent end cap. A retentate seal is formed between the shell and the pressure vessel at a position between the tubesheets. A permeate seal is formed between the pressure vessel and the tubesheet that is adjacent a permeate port of the module. A structure made up of the CMS membranes, shell, tubesheets, and seals is slidable within the pressure vessel and not fixed in place in relation to the pressure vessel and end caps.
    Type: Application
    Filed: December 31, 2021
    Publication date: July 6, 2023
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l?Exploitation des Procedes Georges Claude
    Inventors: Tao LI, Raja SWAIDAN, Robert A. GAGLIANO
  • Patent number: 11691108
    Abstract: A CMS membrane module includes plurality of hollow fiber CMS membranes that are enclosed within an open cylindrical shell whose ends are embedded in tubesheets. The shell is concentrically disposed within an open cylindrical pressure vessel whose open ends are covered by and secured by end caps. The shell includes a feed fluid inlet formed therein between the tubesheets and a retentate outlet in between one of the tubesheets and an adjacent end cap. A retentate seal is formed between the shell and the pressure vessel at a position between the tubesheets. A permeate seal is formed between the pressure vessel and the tubesheet that is adjacent a permeate port of the module. A structure made up of the CMS membranes, shell, tubesheets, and seals is slidable within the pressure vessel and not fixed in place in relation to the pressure vessel and end caps.
    Type: Grant
    Filed: December 31, 2021
    Date of Patent: July 4, 2023
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Tao Li, Raja Swaidan, Robert A. Gagliano
  • Patent number: 10584052
    Abstract: Disclosed are methods for operating a glass furnace, the method comprises the steps of feeding a non-pre-reformed hydrocarbon fuel gas stream to a pre-reformer forming a pre-reformed hydrocarbon fuel gas stream, feeding the pre-reformed hydrocarbon fuel gas stream to burners of the furnace, combusting oxidant and the pre-reformed hydrocarbon fuel gas with the burners to produce flue gas, heating air through heat exchange with the flue gas at a recuperator, and transferring heat from heated air to pre-reformer tubes of the pre-reformer. A glass furnace system is also disclosed.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: March 10, 2020
    Assignee: American Air Liquide, Inc.
    Inventors: Taekyu Kang, Robert A. Gagliano, Pavol Pranda, Ashkan Iranshahi
  • Patent number: 10370248
    Abstract: An improved hydrogen generation system and method for using the same are provided. The system includes an HDS unit configured to remove sulfur, a first and second pre-reformers configured to pre-reform a process gas and fuel gas, respectively, a first and second heat exchangers configured to dry and heat the pre-reformed fuel gas, respectively, and a reformer configured to produce a syngas and flue gas. The method includes using a process stream selected from the group consisting of air, PSA off-gas, hydrocarbon gas, and combinations thereof to dry the fuel gas and using a process stream selected from the group consisting of the flue gas, the syngas, and combinations thereof to heat the dry fuel gas. The second pre-reformer is a low-pressure pre-reformer, so that the heat contents of the fuel gas is increased through converting heavy hydrocarbons in the fuel gas to CO and H2 by the second pre-reformer.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: August 6, 2019
    Assignees: L'Air Liquide Societe Anonyme Pour L'Etude, Et L'Exploration Des Procedes Georges Claude
    Inventors: Taekyu Kang, Rong Fan, Pavol Pranda, Robert A. Gagliano, Benjamin J. Jurcik, Jr.
  • Patent number: 10183258
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 22, 2019
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel
  • Patent number: 10143973
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the bore fluid used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 4, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel, Dean W. Kratzer
  • Patent number: 10112149
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 30, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel
  • Publication number: 20180215619
    Abstract: An improved hydrogen generation system and method for using the same are provided. The system includes an HDS unit configured to remove sulfur, a first and second pre-reformers configured to pre-reform a process gas and fuel gas, respectively, a first and second heat exchangers configured to dry and heat the pre-reformed fuel gas, respectively, and a reformer configured to produce a syngas and flue gas. The method includes using a process stream selected from the group consisting of air, PSA off-gas, hydrocarbon gas, and combinations thereof to dry the fuel gas and using a process stream selected from the group consisting of the flue gas, the syngas, and combinations thereof to heat the dry fuel gas. The second pre-reformer is a low-pressure pre-reformer, so that the heat contents of the fuel gas is increased through converting heavy hydrocarbons in the fuel gas to CO and H2 by the second pre-reformer.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 2, 2018
    Inventors: Taekyu KANG, Rong FAN, Pavol PRANDA, Robert A. GAGLIANO, Benjamin J. JURCIK, JR.
  • Publication number: 20180215618
    Abstract: An improved hydrogen generation system and method for using the same are provided. The system includes an HDS unit configured to remove sulfur from a process gas and a fuel gas, a pre-reformer configured to convert heavy hydrocarbons in the process gas and the fuel gas to methane, a first heat exchanger configured to dry the pre-reformed fuel gas, a second heat exchanger configured to heat the dry pre-reformed fuel gas, and a reformer configured to produce a syngas and flue gas.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 2, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Taekyu KANG, Rong FAN, Pavol PRANDA, Robert A. GAGLIANO, Benjamin J. JURCIK, JR.
  • Publication number: 20180215641
    Abstract: Disclosed are methods for operating a glass furnace, the method comprises the steps of feeding a non-pre-reformed hydrocarbon fuel gas stream to a pre-reformer forming a pre-reformed hydrocarbon fuel gas stream, feeding the pre-reformed hydrocarbon fuel gas stream to burners of the furnace, combusting oxidant and the pre-reformed hydrocarbon fuel gas with the burners to produce flue gas, heating air through heat exchange with the flue gas at a recuperator, and transferring heat from heated air to pre-reformer tubes of the pre-reformer. A glass furnace system is also disclosed.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 2, 2018
    Applicant: American Air Liquide, Inc.
    Inventors: Taekyu KANG, Robert A. GAGLIANO, Pavol PRANDA, Ashkan IRANSHAHI
  • Publication number: 20180001270
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the bore fluid used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL, Dean W. KRATZER
  • Publication number: 20180001271
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Publication number: 20180001269
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Publication number: 20180001272
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Patent number: 9327261
    Abstract: An apparatus for decreasing steam methane reformer (SMR) tube temperature is provided. The apparatus can include an SMR furnace, a monitoring system in communication with the SMR furnace and a water source in fluid communication with the SMR furnace. The SMR furnace includes a plurality of SMR tubes disposed within the SMR furnace. The monitoring system is configured to monitor the temperature of at least a plurality of SMR tubes and compare the temperature against a first predetermined value, and the water source is configured to introduce water to an SMR tube that has a temperature above the first predetermined value, such that the temperature of the SMR tube is reduced.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: May 3, 2016
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Taekyu Kang, Rong Fan, Pavol Pranda, Hwanho Kim, Robert A. Gagliano
  • Patent number: 9321642
    Abstract: A method for decreasing steam methane reformer (SMR) tube temperature is provided. The method can include the steps of introducing a hydrocarbon containing feed to be reformed to a plurality of SMR tubes in the presence of steam under conditions effective to produce hydrogen and carbon monoxide, monitoring the temperature of at least a plurality of the tubes within the SMR during operation, comparing the monitored temperature against a first predetermined value, and introducing an effective amount of water to a reformer tube when the monitored temperature of the reformer tube is at or above the predetermined value, such that the temperature of the reformer tube is reduced.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: April 26, 2016
    Assignee: L'Air Liquide Société´Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Taekyu Kang, Rong Fan, Pavol Pranda, Hwanho Kim, Robert A. Gagliano
  • Publication number: 20150151266
    Abstract: An apparatus for decreasing steam methane reformer (SMR) tube temperature is provided. The apparatus can include an SMR furnace, a monitoring system in communication with the SMR furnace and a water source in fluid communication with the SMR furnace. The SMR furnace includes a plurality of SMR tubes disposed within the SMR furnace. The monitoring system is configured to monitor the temperature of at least a plurality of SMR tubes and compare the temperature against a first predetermined value, and the water source is configured to introduce water to an SMR tube that has a temperature above the first predetermined value, such that the temperature of the SMR tube is reduced.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 4, 2015
    Applicant: L'Aire Liquide Societe Anonyme Pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Taekyu KANG, Rong FAN, Pavol PRANDA, Hwanho KIM, Robert A. GAGLIANO
  • Publication number: 20150151964
    Abstract: A method for decreasing steam methane reformer (SMR) tube temperature is provided. The method can include the steps of introducing a hydrocarbon containing feed to be reformed to a plurality of SMR tubes in the presence of steam under conditions effective to produce hydrogen and carbon monoxide, monitoring the temperature of at least a plurality of the tubes within the SMR during operation, comparing the monitored temperature against a first predetermined value, and introducing an effective amount of water to a reformer tube when the monitored temperature of the reformer tube is at or above the predetermined value, such that the temperature of the reformer tube is reduced.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 4, 2015
    Applicant: L'Air Liquide Societe Anonyme Pour I'Etude et I'Exploitation des Procedes Georges Claude
    Inventors: Taekyu KANG, Rong FAN, Pavol PRANDA, Hwanho KIM, Robert A. GAGLIANO
  • Patent number: 8529849
    Abstract: An improved reactor tube which includes a reactor tube, wherein the reactor tube is at least partially filled with at least one porous media catalyst, and at least one shape memory alloy element located within the reactor tube, wherein; at a first temperature, the shape memory alloy element has a first configuration, at a second temperature, the shape memory alloy element has a second configuration is provided.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: September 10, 2013
    Assignee: American Air Liquide, Inc.
    Inventors: Pavol Pranda, Robert A. Gagliano, Tony M K Thampan
  • Publication number: 20120321530
    Abstract: An improved reactor tube which includes a reactor tube, wherein the reactor tube is at least partially filled with at least one porous media catalyst, and at least one shape memory alloy element located within the reactor tube, wherein; at a first temperature, the shape memory alloy element has a first configuration, at a second temperature, the shape memory alloy element has a second configuration is provided.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: American Air Liquide, Inc.
    Inventors: Pavol Pranda, Robert A. Gagliano, Tony MK Thampan