Patents by Inventor Robert A. Gatenby

Robert A. Gatenby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10827945
    Abstract: Virtually every cancer patient is imaged with CT, PET or MRI. Importantly, such imaging reveals that tumors are complex and heterogeneous, often containing multiple habitats within them. Disclosed herein are methods for analyzing these images to infer cellular and molecular structure in each of these habitats. The methods can involve spatially superimposing two or more radiological images of the tumor sufficient to define regional habitat variations in two or more ecological dynamics in the tumor, and comparing the habitat variations to one or more controls to predict the severity of the tumor.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 10, 2020
    Assignees: H. LEE. MOFFITT CANCER CENTER AND RESEARCH INSTITUTE, INC., UNIVERSITY OF SOUTH FLORIDA
    Inventors: Robert J. Gillies, Robert A. Gatenby, Natarajan Raghunand, John Arrington, Olya Stringfield, Yoganand Balagurunathan, Dmitry B. Goldgof, Lawrence O. Hall
  • Patent number: 10339653
    Abstract: An example method for analyzing quantitative information obtained from radiological images includes identifying a ROI or a VOI in a radiological image, segmenting the ROI or the VOI from the radiological image and extracting quantitative features that describe the ROI or the VOI. The method also includes creating a radiological image record including the quantitative features, imaging parameters of the radiological image and clinical parameters and storing the radiological image record in a data structure containing a plurality of radiological image records. In addition, the method includes receiving a request with the patient's radiological image or information related thereto, analyzing the data structure to determine a statistical relationship between the request and the radiological image records and generating a patient report with a diagnosis, a prognosis or a recommended treatment regimen for the patient's disease based on a result of analyzing the data structure.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: July 2, 2019
    Assignees: H. Lee Moffitt Cancer Center and Research Institute, Inc., The Board of Trustees of the Leland Stanford Junior University, Stichting Maastricht Radiation Oncology ‘Maastro Clinic’
    Inventors: Robert J. Gillies, Steven A. Eschrich, Robert A. Gatenby, Philippe Lambin, Andreas L. A. J. Dekker, Sandy A. Napel, Sylvia K. Plevritis, Daniel L. Rubin
  • Patent number: 10258607
    Abstract: A method of treating cancer or inhibiting metastasis in a subject by increasing intratumoral extracellular pH is presented. The method includes administering to the subject a therapeutically effective amount of a buffer having a pKa greater than 6.1. In an advantageous embodiment the pKa of the buffer is about 7.0. Examples of buffers for increasing extracellular pH include NaHCO3, 2-imidazole-1-yl-3-ethoxycarbonylpropionic acid (IEPA), cholamine chloride, N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES) and 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES). The method can further include the step of pretreating with one or more chemotherapeutic agents.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 16, 2019
    Assignee: H. Lee Moffitt Cancer Center and Research Institute, Inc.
    Inventors: Robert J. Gillies, David L. Morse, Ariosto Siqueira Silva, Arig A. Ibrahim Hashim, Robert A. Gatenby, Gary Martinez
  • Publication number: 20170358079
    Abstract: An example method for analyzing quantitative information obtained from radiological images includes identifying a ROI or a VOI in a radiological image, segmenting the ROI or the VOI from the radiological image and extracting quantitative features that describe the ROI or the VOI. The method also includes creating a radiological image record including the quantitative features, imaging parameters of the radiological image and clinical parameters and storing the radiological image record in a data structure containing a plurality of radiological image records. In addition, the method includes receiving a request with the patient's radiological image or information related thereto, analyzing the data structure to determine a statistical relationship between the request and the radiological image records and generating a patient report with a diagnosis, a prognosis or a recommended treatment regimen for the patient's disease based on a result of analyzing the data structure.
    Type: Application
    Filed: July 31, 2017
    Publication date: December 14, 2017
    Inventors: Robert J. Gillies, Steven A. Eschrich, Robert A. Gatenby, Philippe Lambin, Andreas L.A.J. Dekker, Sandy A. Napel, Sylvia K. Plevritis, Daniel L. Rubin
  • Patent number: 9721340
    Abstract: An example method for analyzing quantitative information obtained from radiological images includes identifying a ROI or a VOI in a radiological image, segmenting the ROI or the VOI from the radiological image and extracting quantitative features that describe the ROI or the VOI. The method also includes creating a radiological image record including the quantitative features, imaging parameters of the radiological image and clinical parameters and storing the radiological image record in a data structure containing a plurality of radiological image records. In addition, the method includes receiving a request with the patient's radiological image or information related thereto, analyzing the data structure to determine a statistical relationship between the request and the radiological image records and generating a patient report with a diagnosis, a prognosis or a recommended treatment regimen for the patient's disease based on a result of analyzing the data structure.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: August 1, 2017
    Assignee: H. Lee Moffitt Cancer Center and Research Institute, Inc.
    Inventors: Robert J. Gillies, Steven A. Eschrich, Robert A. Gatenby, Philippe Lambin, Andreas L. A. J. Dekker, Sandy A. Napel, Sylvia K. Plevritis, Daniel L. Rubin
  • Publication number: 20170071496
    Abstract: Virtually every cancer patient is imaged with CT, PET or MRI. Importantly, such imaging reveals that tumors are complex and heterogeneous, often containing multiple habitats within them. Disclosed herein are methods for analyzing these images to infer cellular and molecular structure in each of these habitats. The methods can involve spatially superimposing two or more radiological images of the tumor sufficient to define regional habitat variations in two or more ecological dynamics in the tumor, and comparing the habitat variations to one or more controls to predict the severity of the tumor.
    Type: Application
    Filed: March 10, 2015
    Publication date: March 16, 2017
    Inventors: Robert J. Gillies, Robert A. Gatenby, Natarajan Raghunand, John Arrington, Olya Stringfield, Yoganand Balagurunathan, Dmitry B. Goldgof, Lawrence O. Hall
  • Publication number: 20160203599
    Abstract: An example method for analyzing quantitative information obtained from radiological images includes identifying a ROI or a VOI in a radiological image, segmenting the ROI or the VOI from the radiological image and extracting quantitative features that describe the ROI or the VOI. The method also includes creating a radiological image record including the quantitative features, imaging parameters of the radiological image and clinical parameters and storing the radiological image record in a data structure containing a plurality of radiological image records. In addition, the method includes receiving a request with the patient's radiological image or information related thereto, analyzing the data structure to determine a statistical relationship between the request and the radiological image records and generating a patient report with a diagnosis, a prognosis or a recommended treatment regimen for the patient's disease based on a result of analyzing the data structure.
    Type: Application
    Filed: August 13, 2014
    Publication date: July 14, 2016
    Inventors: Robert J. Gillies, Steven A. Eschrich, Robert A. Gatenby, Philippe Lambin, Andreas L.A.J. Dekker, Sandy A. Napel, Sylvia K. Plevritis, Daniel L. Rubin
  • Publication number: 20120277245
    Abstract: A method of treating cancer or inhibiting metastasis in a subject by increasing intratumoral extracellular pH is presented. The method includes administering to the subject a therapeutically effective amount of a buffer having a pKa greater than 6.1. In an advantageous embodiment the pKa of the buffer is about 7.0. Examples of buffers for increasing extracellular pH include NaHCO3, 2-imidazole-1-yl-3-ethoxycarbonylpropionic acid (IEPA), cholamine chloride, N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES) and 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES). The method can further include the step of pretreating with one or more chemotherapeutic agents.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 1, 2012
    Applicant: H. Lee Moffitt Cancer Center and Research Institute, Inc.
    Inventors: Robert J. Gillies, David L. Morse, Ariosto Siqueira Silva, Arig A. Ibrahim Hashim, Robert A. Gatenby, Gary Martinez
  • Publication number: 20030125283
    Abstract: The present invention provides methods of treating proliferative disorders in vivo by the direct administration of tritium to target cell nuclei. Tritium is administered to target cell nuclei by a tritiated nuclear targeting agent, which is directed to the target cell nucleus where it associates with the cell's DNA. The close association of the tritiated nuclear targeting agent with the target cell DNA allows the low-energy beta particle emitted by the tritium to damage to the target cell DNA and kill the cell. Tritiated nuclear targeting agents can also be delivered to the target cells by structures such as liposomes, micelles and microcapsules.
    Type: Application
    Filed: September 16, 2002
    Publication date: July 3, 2003
    Inventor: Robert A. Gatenby
  • Patent number: 4957481
    Abstract: The present invention is directed toward methods for the reduction of the severity of symptoms resulting from tumors, such as pain induced by the pressure exerted on a nerve by the tumor mass. Additionally, methods for the reduction of tumor size are also contemplated.
    Type: Grant
    Filed: July 3, 1989
    Date of Patent: September 18, 1990
    Assignee: U.S. Bioscience
    Inventor: Robert A. Gatenby