Patents by Inventor Robert A. Reibold

Robert A. Reibold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11414598
    Abstract: Disclosed here is a method for making a monolithic rare earth oxide (REO) aerogel, comprising: preparing a reaction mixture comprising at least one rare earth metal nitrate, at least one epoxide, at least one base catalyst, and at least one organic solvent; curing the mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the monolithic REO aerogel. Also disclosed is an REO aerogel comprising a network of REO nanostructures, wherein the REO aerogel is a monolith having at least one lateral dimension of at least 1 cm, wherein the REO aerogel has a density of about 40-500 mg/cm3 and/or a BET surface area of at least about 20 m2/g, and wherein the REO aerogel is substantially free of oxychloride.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 16, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Alexander E. Gash, Robert A. Reibold
  • Publication number: 20190211264
    Abstract: Disclosed here is a method for making a monolithic rare earth oxide (REO) aerogel, comprising: preparing a reaction mixture comprising at least one rare earth metal nitrate, at least one epoxide, at least one base catalyst, and at least one organic solvent; curing the mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the monolithic REO aerogel. Also disclosed is an REO aerogel comprising a network of REO nanostructures, wherein the REO aerogel is a monolith having at least one lateral dimension of at least 1 cm, wherein the REO aerogel has a density of about 40-500 mg/cm3 and/or a BET surface area of at least about 20 m2/g, and wherein the REO aerogel is substantially free of oxychloride.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Alexander E. Gash, Robert A. Reibold
  • Patent number: 10336937
    Abstract: Disclosed here is a method for making a monolithic rare earth oxide (REO) aerogel, comprising: preparing a reaction mixture comprising at least one rare earth metal nitrate, at least one epoxide, at least one base catalyst, and at least one organic solvent; curing the mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the monolithic REO aerogel. Also disclosed is an REO aerogel comprising a network of REO nanostructures, wherein the REO aerogel is a monolith having at least one lateral dimension of at least 1 cm, wherein the REO aerogel has a density of about 40-500 mg/cm3 and/or a BET surface area of at least about 20 m2/g, and wherein the REO aerogel is substantially free of oxychloride.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: July 2, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Alexander E. Gash, Robert A. Reibold
  • Patent number: 9840443
    Abstract: A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: December 12, 2017
    Assignee: Lawrence Livermore National Laboratory, LLC
    Inventors: Richard Landingham, Robert A. Reibold, Joe Satcher
  • Publication number: 20170267925
    Abstract: Disclosed here is a method for making a monolithic rare earth oxide (REO) aerogel, comprising: preparing a reaction mixture comprising at least one rare earth metal nitrate, at least one epoxide, at least one base catalyst, and at least one organic solvent; curing the mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the monolithic REO aerogel. Also disclosed is an REO aerogel comprising a network of REO nanostructures, wherein the REO aerogel is a monolith having at least one lateral dimension of at least 1 cm, wherein the REO aerogel has a density of about 40-500 mg/cm3 and/or a BET surface area of at least about 20 m2/g, and wherein the REO aerogel is substantially free of oxychloride.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 21, 2017
    Inventors: Marcus A. Worsley, Alexander E. Gash, Robert A. Reibold
  • Publication number: 20160194251
    Abstract: A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.
    Type: Application
    Filed: October 16, 2014
    Publication date: July 7, 2016
    Inventors: Richard Landingham, Robert A. Reibold, Joe Satcher, JR.
  • Publication number: 20100267541
    Abstract: A method for producing ceramic materials utilizing the sol-gel process enables the preparation of intimate homogeneous dispersions of materials while offering the ability to control the size of one component within another. The method also enables the preparation of materials that densify at reduced temperatures. Applications of the compositions include filters, solid-oxide fuel cells, membranes, ceramic cutting tools and wear and auto parts. In one example, 10 g of AlCl6.6H2O is added to a 150 ml beaker and dissolved in 10 g EtOH and 1 g H2O. While stirring, 0.456 g of B4C powder is added. Then 9.6 g of propylene oxide is added. The gel sets up in about 10 minutes and is dried overnight. It is then washed with 1% NH4OH and air dried to yield 3.969 g of Al2O3/B4C xerogel.
    Type: Application
    Filed: June 28, 2006
    Publication date: October 21, 2010
    Inventors: Joe H. Satcher, JR., Alexander E. Gash, Randall L. Simpson, Richard L. Landingham, Robert A. Reibold
  • Patent number: 7087544
    Abstract: Disclosed herein is a method to produce ceramic materials utilizing the sol-gel process. The methods enable the preparation of intimate homogeneous dispersions of materials while offering the ability to control the size of one component within another. The method also enables the preparation of materials that will densify at reduced temperature.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: August 8, 2006
    Assignee: The Regents of the University of California
    Inventors: Joe H. Satcher, Jr., Alex Gash, Randall Simpson, Richard Landingham, Robert A. Reibold
  • Publication number: 20030224924
    Abstract: Disclosed herein is a method to produce ceramic materials utilizing the sol-gel process. The methods enable the preparation of intimate homogeneous dispersions of materials while offering the ability to control the size of one component within another. The method also enables the preparation of materials that will densify at reduced temperature.
    Type: Application
    Filed: May 28, 2003
    Publication date: December 4, 2003
    Applicant: The Regents of the University of California
    Inventors: Joe H. Satcher, Alex Gash, Randall Simpson, Richard Landingham, Robert A. Reibold