Patents by Inventor Robert A. Vaughan

Robert A. Vaughan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11045341
    Abstract: Apparatus for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to a longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 29, 2021
    Assignee: USGI MEDICAL, INC.
    Inventors: Vahid Saadat, Richard C. Ewers, Cang C. Lam, Robert A. Vaughan, Chris Rothe, Kenneth H. Michlitsch
  • Publication number: 20180344501
    Abstract: Apparatus for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to a longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
    Type: Application
    Filed: July 24, 2018
    Publication date: December 6, 2018
    Inventors: Vahid Saadat, Richard C. Ewers, Cang C. Lam, Robert A. Vaughan, Chris Rothe, Kenneth H. Michlitsch
  • Patent number: 10045871
    Abstract: Apparatus for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to a longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: August 14, 2018
    Assignee: USGI Medical, Inc.
    Inventors: Vahid Saadat, Richard C. Ewers, Cang C. Lam, Robert A. Vaughan, Chris Rothe, Kenneth H. Michlitsch
  • Patent number: 9585651
    Abstract: Methods and apparatus for securing and deploying tissue anchors are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member. A reconfigurable launch tube is also pivotably coupled to the tissue manipulation assembly, which may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly. A deployment assembly is provided for securing engaged tissue via one or more tissue anchors, the deployment assembly also being configured to disengage the anchors endoluminally or laparoscopically.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: March 7, 2017
    Assignee: USGI Medical, Inc.
    Inventors: Cang C. Lam, Richard C. Ewers, Robert A. Vaughan, Vahid Saadat
  • Publication number: 20170056228
    Abstract: Apparatus for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to a longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
    Type: Application
    Filed: November 11, 2016
    Publication date: March 2, 2017
    Inventors: Vahid Saadat, Richard C. Ewers, Cang C. Lam, Robert A. Vaughan, Chris Rothe, Kenneth H. Michlitsch
  • Patent number: 9572581
    Abstract: Tissue manipulation and securement systems are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member and has a lower jaw member and an upper jaw member pivotably coupled to the lower jaw member. A reconfigurable launch tube is also pivotably coupled to the upper jaw member and is used to urge the jaw members from a low-profile configuration to an open configuration for receiving tissue. The tissue manipulation assembly may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: February 21, 2017
    Assignee: USGI Medical, Inc.
    Inventors: Robert A. Vaughan, Cang C. Lam, Richard C. Ewers, Vahid Saadat
  • Patent number: 9510817
    Abstract: Apparatus for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably dispose through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: December 6, 2016
    Assignee: USGI Medical, Inc.
    Inventors: Vahid Saadat, Richard C. Ewers, Cang C. Laduca, Robert A. Vaughan, Chris Rothe, Kenneth J. Michlitsch
  • Publication number: 20140358164
    Abstract: Tissue manipulation and securement systems are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member and has a lower jaw member and an upper jaw member pivotably coupled to the lower jaw member. A reconfigurable launch tube is also pivotably coupled to the upper jaw member and is used to urge the jaw members from a low-profile configuration to an open configuration for receiving tissue. The tissue manipulation assembly may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Robert A. Vaughan, Cang C. Lam, Richard C. Ewers, Vahid Saadat
  • Patent number: 8828027
    Abstract: Tissue manipulation and securement systems are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member and has a lower jaw member and an upper jaw member pivotably coupled to the lower jaw member. A reconfigurable launch tube is also pivotably coupled to the upper jaw member and is used to urge the jaw members from a low-profile configuration to an open configuration for receiving tissue. The tissue manipulation assembly may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: September 9, 2014
    Assignee: U.S.G.I. Medical, Inc.
    Inventors: Robert A. Vaughan, Cang C. Lam, Richard C. Ewers, Vahid Saadat
  • Publication number: 20120296348
    Abstract: Apparatus for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably dispose through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
    Type: Application
    Filed: June 7, 2012
    Publication date: November 22, 2012
    Applicant: USGI MEDICAL, INC.
    Inventors: Vahid Saadat, Richard C. Ewers, Cang C. Laduca, Robert A. Vaughan, Chris Rothe, Kenneth J. Michlitsch
  • Patent number: 8216253
    Abstract: Apparatus for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to a longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: July 10, 2012
    Assignee: USGI Medical, Inc.
    Inventors: Vahid Saadat, Richard C. Ewers, Cang C. Lam, Robert A. Vaughan, Chris Rothe, Kenneth J. Michlitsch
  • Patent number: 8216252
    Abstract: Tissue manipulation and securement systems are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member and has a lower jaw member and an upper jaw member pivotably coupled to the lower jaw member. A reconfigurable launch tube is also pivotably coupled to the upper jaw member and is used to urge the jaw members from a low-profile configuration to an open configuration for receiving tissue. The tissue manipulation assembly may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: July 10, 2012
    Assignee: USGI Medical, Inc.
    Inventors: Robert A. Vaughan, Cang C. Lam, Richard C. Ewers, Vahid Saadat
  • Patent number: 8092489
    Abstract: A tissue grasping apparatus includes a control member, an elongated shaft, and a tissue grasping member attached to the distal end of the elongated shaft. An activation mechanism provides an user-operable connection between the control member and the tissue grasping member. In an embodiment, the tissue grasping member includes a pair of jaws configured to open to an included angle between the jaws of 180 degrees or more. In an embodiment, the activation mechanism includes a flexible drive wire attached to the penetrating member.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: January 10, 2012
    Assignee: USGI Medical, Inc.
    Inventors: Richard C. Ewers, Eugene Chen, Arvin T. Chang, Robert A. Vaughan
  • Publication number: 20100249814
    Abstract: Tissue manipulation and securement systems are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member and has a lower jaw member and an upper jaw member pivotably coupled to the lower jaw member. A reconfigurable launch tube is also pivotably coupled to the upper jaw member and is used to urge the jaw members from a low-profile configuration to an open configuration for receiving tissue. The tissue manipulation assembly may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly.
    Type: Application
    Filed: June 14, 2010
    Publication date: September 30, 2010
    Applicant: USGI MEDICAL, INC.
    Inventors: Robert A. VAUGHAN, Cang C. LAM, Richard C. EWERS, Vahid SAADAT
  • Patent number: 7736374
    Abstract: Tissue manipulation and securement systems are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member and has a lower jaw member and an upper jaw member pivotably coupled to the lower jaw member. A reconfigurable launch tube is also pivotably coupled to the upper jaw member and is used to urge the jaw members from a low-profile configuration to an open configuration for receiving tissue. The tissue manipulation assembly may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: June 15, 2010
    Assignee: USGI Medical, Inc.
    Inventors: Robert A. Vaughan, Cang C. Lam, Richard C. Ewers, Vahid Saadat
  • Publication number: 20090259141
    Abstract: An articulatable, steerable tool guide includes a maneuverable head subassembly, a flexible or rigid insertion tube subassembly, and a handle subassembly. The tool guide defines at least one inner lumen extending through the length of the tool guide, with each such lumen being adapted to receive a flexible endoscopic medical device.
    Type: Application
    Filed: March 20, 2009
    Publication date: October 15, 2009
    Applicant: USGI Medical, Inc.
    Inventors: Richard C. EWERS, Arvin T. CHANG, Robert A. VAUGHAN
  • Publication number: 20090171161
    Abstract: Flexible, steerable, endoscopic instruments include a handle, a flexible shaft, and an end effector. The handle includes an actuator for controlling the end effector. The handle also includes a steering mechanism for steering the endoscopic instrument. The steering mechanism includes one or more tensioning members configured to increase or decrease a tension force on one or more steering wires that are attached to one or more steerable portions of the flexible shaft.
    Type: Application
    Filed: December 10, 2008
    Publication date: July 2, 2009
    Applicant: USGI Medical, Inc.
    Inventors: Richard C. EWERS, Robert A. VAUGHAN
  • Publication number: 20080262300
    Abstract: An endoscopic system includes a sheath having a flexible sheath body. A tip is attached to a distal end of the sheath body. A handle is attached to the proximal end of the sheath body. A steerable section may be provided in the sheath adjacent to the tip. Steering controls may then be provided on the handle for steering the steerable section. Lumens extend from the tip to the handle. The distal end of each lumen is sealed to the tip. Bodily fluids can only enter into the lumens and not other areas within the sheath. A shapelock assembly has an elongated hollow body positionable within the sheath body. The shapelock body may be switched between generally rigid and flexible conditions. The sheath provides a sterile barrier around the shapelock body. The shapelock assembly can be readily reused and the sheath may be disposable.
    Type: Application
    Filed: May 18, 2007
    Publication date: October 23, 2008
    Applicant: USGI Medical, Inc.
    Inventors: Richard C. Ewers, Eugene Chen, Tung Thanh Le, Robert A. Vaughan, Marvin C. Elmer, John A. Cox, Tracy D. Maahs
  • Publication number: 20080262294
    Abstract: An endoscopic system includes a sheath having a flexible sheath body. A tip is attached to a distal end of the sheath body. A handle is attached to the proximal end of the sheath body. A steerable section may be provided in the sheath adjacent to the tip. Steering controls may then be provided on the handle for steering the steerable section. Lumens extend from the tip to the handle. The distal end of each lumen is sealed to the tip. Bodily fluids can only enter into the lumens and not other areas within the sheath. A shapelock assembly has an elongated hollow body positionable within the sheath body. The shapelock body may be switched between generally rigid and flexible conditions. The sheath provides a sterile barrier around the shapelock body. The shapelock assembly can be readily reused and the sheath may be disposable.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Applicant: USGI MEDICAL, INC.
    Inventors: Richard C. EWERS, Eugene CHEN, Tung Thanh LE, Robert A. VAUGHAN, Marvin C. ELMER, John A. COX, Tracy D. MAAHS
  • Publication number: 20080262539
    Abstract: A tissue grasping apparatus includes a control member, an elongated shaft, and a tissue grasping member attached to the distal end of the elongated shaft. An activation mechanism provides an user-operable connection between the control member and the tissue grasping member. In an embodiment, the tissue grasping member includes a pair of jaws configured to open to an included angle between the jaws of 180 degrees or more. In an embodiment, the activation mechanism includes a flexible drive wire attached to the penetrating member.
    Type: Application
    Filed: April 17, 2007
    Publication date: October 23, 2008
    Applicant: USGI Medical, Inc.
    Inventors: Richard C. Ewers, Eugene Chen, Arvin T. Chang, Robert A. Vaughan