Patents by Inventor Robert A. Watts

Robert A. Watts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220334313
    Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 20, 2022
    Applicant: Analog Photonics LLC
    Inventors: Zhan Su, Erman Timurdogan, Michael Robert Watts
  • Patent number: 11422431
    Abstract: An optical switching apparatus comprises: input ports receiving respective input optical waves, each coupled to a respective beam-forming structure comprising: an input optical waveguide, an optical power distributor to distribute optical power from a mode of the optical waveguide over the respective spatial region, and a spatially distributed phase shifter to apply different transmission optical phase shifts over different portions of the respective spatial region, where the transmission optical phase shifts determine the selected transmission angle; and output ports providing respective output optical waves, each coupled to a respective beam-receiving structure comprising: a spatially distributed phase shifter to apply different reception optical phase shifts over different portions of the respective spatial region, where the reception optical phase shifts determine the selected reception angle, an optical power combiner to combine optical power from different portions of the respective spatial region into
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: August 23, 2022
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Shah Hosseini, Michael Robert Watts, Matthew Byrd
  • Patent number: 11409044
    Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: August 9, 2022
    Assignee: Analog Photonics LLC
    Inventors: Zhan Su, Erman Timurdogan, Michael Robert Watts
  • Publication number: 20220244454
    Abstract: A plurality of waveguide structures are formed in at least one silicon layer of a first member. The first member includes: a first surface of a first silicon dioxide layer that is attached to a second member that consists essentially of an optically transmissive material having a thermal conductivity less than about 50 W/(m·K), and a second surface of material that was deposited over at least some of the plurality of waveguide structures. An array of phase shifters is formed in one or more layers of the first member. An array of temperature controlling elements are in proximity to the array of phase shifters.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 4, 2022
    Inventors: Michael Robert Watts, Benjamin Roy Moss, Ehsan Shah Hosseini, Christopher Vincent Poulton, Peter Nicholas Russo
  • Patent number: 11353769
    Abstract: Speckle reduction in photonic phased array structures can be achieved using a receiver aperture that is configured to provide optical energy through portions of at least one optical network. The optical network is in communication with phase-controlled elements of at least one array of phase-controlled elements. Optical energy is coupled through a first portion of the optical network to a first optical detector in a detector structure, and optical energy is coupled through a second portion of the optical network to a second optical detector in the detector structure different from the first optical detector in the detector structure.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: June 7, 2022
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Shah Hosseini, Michael Robert Watts, Peter Nicholas Russo
  • Publication number: 20220146903
    Abstract: An apparatus includes: an optical phased array (e.g., on a photonic integrated circuit), a focusing element, which can be at a fixed position relative to the optical phased array and configured to receive an optical beam from the optical phased array, and a steering element, which can be at a fixed position relative to the focusing element and configured to transmit the optical beam received from the focusing element. In some implementations, at least one of the focusing element or the steering element is externally coupled to the photonic integrated circuit.
    Type: Application
    Filed: October 14, 2021
    Publication date: May 12, 2022
    Inventors: Michael Robert Watts, Katia Shtyrkova, Christopher Vincent Poulton, Ehsan Shah Hosseini, Benjamin Roy Moss
  • Patent number: 11320585
    Abstract: A plurality of waveguide structures are formed in at least one silicon layer of a first member. The first member includes: a first surface of a first silicon dioxide layer that is attached to a second member that consists essentially of an optically transmissive material having a thermal conductivity less than about 50 W/(m·K), and a second surface of material that was deposited over at least some of the plurality of waveguide structures. An array of phase shifters is formed in one or more layers of the first member. An array of temperature controlling elements are in proximity to the array of phase shifters.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: May 3, 2022
    Assignee: Analog Photonics LLC
    Inventors: Michael Robert Watts, Benjamin Roy Moss, Ehsan Shah Hosseini, Christopher Vincent Poulton, Peter Nicholas Russo
  • Patent number: 11312085
    Abstract: Embodiments herein include a system for joining components. The system can include a rotating base platform, a plurality of receptacles mounted to the base platform, and a rotating sonotrode platform. A plurality of sonotrodes are mounted to the sonotrode platform. Each sonotrode can correspond to a receptacle. Each sonotrode can move in a reciprocating motion between a release position distant from a corresponding receptacle and a compressing position proximal to the corresponding receptacle. The compressing position occurs at a first angular position of the sonotrode platform. Each sonotrode is energized at the compressing position.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: April 26, 2022
    Assignee: Campbell Soup Company
    Inventor: Mark Robert Watts
  • Publication number: 20220124136
    Abstract: While a stream device is streaming a media program from a multimedia device to a client device, the streaming device may be configured to send a first portion of the media program to the client device, where the first portion is transcoded from a first format into a second different format and adapted for a first playing mode of the client device. The streaming device may be configured to receive an indication of a user command from the client device specifying a second different playing mode of the client device. The streaming device may be configured to send a second different portion of the media program to the client device, where the second portion is transcoded from the first format to the second format and adapted for the second playing mode of the client device.
    Type: Application
    Filed: November 19, 2021
    Publication date: April 21, 2022
    Inventors: Robert Watts, Michael Minakami, Bhavya Bambhania
  • Publication number: 20220075186
    Abstract: An apparatus comprises: a first integrated circuit comprising: a plurality of sets of optical waveguides, each set of optical waveguides including a plurality of optical waveguide segments, and a plurality of optical emitter elements arranged over a first surface of the first integrated circuit, each optical emitter element coupled to a distal end of one of the optical waveguide segments; and a second integrated circuit comprising: a plurality of optical phase shifters that each provide a phase-shifted optical wave that is coupled to the first integrated circuit from a first edge surface of the second integrated circuit. The first edge surface of the second integrated circuit is in proximity to a row of proximal ends of the optical waveguide segments of a first set of the plurality of sets of optical waveguides.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 10, 2022
    Applicant: Analog Photonics LLC
    Inventors: Michael Robert Watts, Ehsan Shah Hosseini, Benjamin Roy Moss, Christopher Vincent Poulton
  • Patent number: 11269236
    Abstract: Aspects of the present disclosure describe optical structures and devices, and more particularly to improved, tunable optical structures including optical gratings that are dynamically affected and/or tuned by acousto-optic or electro-optic mechanisms.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 8, 2022
    Assignee: Analog Photonics LLC
    Inventors: Erman Timurdogan, Ehsan Shah Hosseini, Michael Robert Watts, Michael J. Whitson
  • Patent number: 11229095
    Abstract: Embodiments herein include processing systems for food products and related methods. In an embodiment, a food processing system is included with a continuous processing channel divided into a come-up chamber, a main electromagnetic wave (such as microwave) heating chamber, and a cool-down chamber. The continuous processing channel can define at least two separate portions oriented for vertical product movement. In various embodiments, the come-up chamber, the main electromagnetic wave heating chamber, and the cool-down chamber are at least partially filled with liquid. The system can further include a product conveyor mechanism to convey food products to be processed continuously along a conveyance path passing from the come-up chamber through the main electromagnetic wave heating chamber and to the cool-down chamber. The system can further include an electromagnetic wave energy emitting apparatus configured to emit electromagnetic wave energy into the main heating chamber.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: January 18, 2022
    Assignee: Campbell Soup Company
    Inventors: Rasheed Mohammed, Mark Robert Watts, Alexander Louis Augugliaro, Scott Wayne Keller
  • Publication number: 20220003937
    Abstract: Aspects of the present disclosure describe large scale steerable optical switched arrays that may be fabricated on a common substrate including many thousands or more emitters that may be arranged in a curved pattern at the focal plane of a lens thereby allowing the directional control of emitted light and selective reception of reflected light suitable for use in imaging, ranging, and sensing applications including accident avoidance.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Inventors: Ehsan Shah Hosseini, Michael Robert Watts
  • Patent number: 11196486
    Abstract: Optical communication with a remote node comprises: transmitting at least one optical beam to the remote node; receiving at least a portion of at least one optical beam from the remote node; providing intensity information based on one or more signals from one or more optical detector modules in an array of optical detector modules detecting the portion of the optical beam received from the remote node; and controlling at least one optical phased array to steer the optical beam transmitted to the remote node based on intensity information received from the remote node.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: December 7, 2021
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Shah Hosseini, Michael Robert Watts
  • Patent number: 11187541
    Abstract: A method of requesting map data by a wireless communications device entails steps of predicting a future area of interest for which map data may be required, downloading the map data for the future area of interest, and then caching the map data for the future area of interest. Cached map data is thus available for rendering when the device moves into the future area of interest, thus expediting the generation of onscreen maps. Predicting the future area of interest can be accomplished, for example, by determining the direction of travel, by identifying a roadway upon which the device user is travelling, or by identifying a programmed route in a navigation application.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: November 30, 2021
    Assignee: BlackBerry Limited
    Inventors: Christophe Gibran, Robert Watt, Michael J. Crowley
  • Publication number: 20210341675
    Abstract: A polarization rotator structure includes: a first core structure formed at a first layer, extending from the first end to a second end, and a second core structure formed at a second layer that is at a different depth than the first layer and formed in proximity to the first core structure. The first core structure and the second core structure provide mode hybridization between at least two orthogonally polarized waveguide modes of the PRS. An optical splitter structure is optically coupled at a first end to the second end of the PRS, and optically coupled at a second end to at least two optical waveguides, and includes: a first core structure that is contiguous with at least one of the first or second core structures of the PRS, and a second core structure that is separate from both of the first and second core structures of the PRS.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 4, 2021
    Applicant: Analog Photonics LLC
    Inventors: Zhan Su, Erman Timurdogan, Michael Robert Watts
  • Publication number: 20210323241
    Abstract: Embodiments herein include a system for joining components. The system can include a rotating base platform, a plurality of receptacles mounted to the base platform, and a rotating sonotrode platform. A plurality of sonotrodes are mounted to the sonotrode platform. Each sonotrode can correspond to a receptacle. Each sonotrode can move in a reciprocating motion between a release position distant from a corresponding receptacle and a compressing position proximal to the corresponding receptacle. The compressing position occurs at a first angular position of the sonotrode platform. Each sonotrode is energized at the compressing position.
    Type: Application
    Filed: February 8, 2021
    Publication date: October 21, 2021
    Inventor: Mark Robert Watts
  • Patent number: 11150411
    Abstract: Aspects of the present disclosure describe large scale steerable optical switched arrays that may be fabricated on a common substrate including many thousands or more emitters that may be arranged in a curved pattern at the focal plane of a lens thereby allowing the directional control of emitted light and selective reception of reflected light suitable for use in imaging, ranging, and sensing applications including accident avoidance.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: October 19, 2021
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Shah Hosseini, Michael Robert Watts
  • Publication number: 20210223544
    Abstract: Aspects of the present disclosure describe systems, methods, and structures for aberration correction of optical phased arrays that employ a corrective optical path difference (OPD) in the near-field of an OPA to correct or cancel out aberrations in emitted beams of the OPA including those reaching far-field distances by generating a spatially-varying OPD across the aperture of the OPA that is substantially equal and opposite to an equivalent OPD of the aberration(s).
    Type: Application
    Filed: March 16, 2021
    Publication date: July 22, 2021
    Applicant: Analog Photonics LLC
    Inventors: Peter Nicholas Russo, Ehsan Shah Hosseini, Christopher Vincent Poulton, Erman Timurdogan, Diedrik Vermeulen, Michael Robert Watts, Michael J. Whitson
  • Publication number: 20210152243
    Abstract: Optical communication with a remote node comprises: transmitting at least one optical beam to the remote node; receiving at least a portion of at least one optical beam from the remote node; providing intensity information based on one or more signals from one or more optical detector modules in an array of optical detector modules detecting the portion of the optical beam received from the remote node; and controlling at least one optical phased array to steer the optical beam transmitted to the remote node based on intensity information received from the remote node.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 20, 2021
    Inventors: Ehsan Shah Hosseini, Michael Robert Watts