Patents by Inventor Robert A. Wolkow

Robert A. Wolkow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220299544
    Abstract: A nano-positioning system for fine and coarse nano-positioning including at least one actuator, wherein the at least one actuator includes a high Curie temperature material and wherein the nano-positioning system is configured to apply a voltage to the at least one actuator to generate fine and/or coarse motion by the at least one actuator. The nano-positioning system being a stand-alone system, a scanning probe microscope, or an attachment to an existing microscope configured to perform a method of creepless nano-positioning that includes positioning a probe relative to a first area of a substrate using coarse stepping and interacting with the first area of the substrate using fine motion after less than 60 seconds of the positioning the probe. The movement of the scanning probe microscope is actuated by a high Curie temperature piezoelectric material that limits and/or eliminates creep, hysteresis and aging.
    Type: Application
    Filed: August 31, 2020
    Publication date: September 22, 2022
    Applicants: National Research Council of Canada, The Governors of the University of Alberta
    Inventors: Robert A. Wolkow, Jason Pitters, Mark Salomons
  • Publication number: 20220155339
    Abstract: A method for assessing the quality of a tip of a scanning probe microscope (SPM) includes recording an SPM image, extracting a plurality of images of dangling bonds from the SPM image, feeding the extracted images of dangling bonds into a convolution neural network one image at a time, analyzing each of the plurality of images of dangling bonds using the convolution neural network, assigning each of the plurality of images of dangling bonds one of a sharp tip status or a double tip status, and determining whether the number of the plurality of images of dangling bonds of the SPM image assigned the double tip status exceeds a predetermined threshold. A method of automatically conditioning a tip of a scanning probe microscope (SPM) during imaging of a sample and a method of mass-producing atomistic quantum dots, qubits, or particular atom orbital occupation are also provided.
    Type: Application
    Filed: January 22, 2022
    Publication date: May 19, 2022
    Applicants: Quantum Silicon Inc., The Governors of the University of Alberta
    Inventors: Mohammad Rashidi, Robert Wolkow
  • Patent number: 11320455
    Abstract: A method for assessing the quality of a tip of a scanning probe microscope (SPM) includes recording an SPM image, extracting a plurality of images of dangling bonds from the SPM image, feeding the extracted images of dangling bonds into a convolution neural network one image at a time, analyzing each of the plurality of images of dangling bonds using the convolution neural network, assigning each of the plurality of images of dangling bonds one of a sharp tip status or a double tip status, and determining whether the number of the plurality of images of dangling bonds of the SPM image assigned the double tip status exceeds a predetermined threshold. A method of automatically conditioning a tip of a scanning probe microscope (SPM) during imaging of a sample and a method of mass-producing atomistic quantum dots, qubits, or particular atom orbital occupation are also provided.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: May 3, 2022
    Assignees: The Governors of the University of Alberta, Quantum Silicon Inc.
    Inventors: Mohammad Rashidi, Robert Wolkow
  • Publication number: 20220130033
    Abstract: A method for autonomously applying a dangling bond pattern to a substrate for atom scale device fabrication includes inputting the pattern, initiating a patterning process, scanning the substrate using a scanning probe microscope (SPM) to generate an SPM image of the substrate, feeding the SPM image into a trained convolution neural network (CNN), analyzing the SPM image using the CNN to identify substrate defects, determining a defect free substrate area for pattern application; and applying the pattern to the substrate in that area. An atom scale electronic component includes functional patches on a substrate and wires electrically connecting the functional patches. Training a CNN includes recording a Scanning Tunneling Microscope (STM) image of the substrate, extracting images of defects from the STM image, labeling pixel-wise the defect images, and feeding the extracted and labeled images of defects into a CNN to train the CNN for semantic segmentation.
    Type: Application
    Filed: February 14, 2020
    Publication date: April 28, 2022
    Applicant: Quantum Silicon Inc.
    Inventors: Mohammad Rashidi, Jeremiah Croshaw, Robert Wolkow
  • Publication number: 20220102197
    Abstract: A method for treating a wafer is provided with a portion of a semiconductor layer is selectively removed from the wafer so as to create an inactive region of the wafer surrounding a first active region of the wafer. The inactive region of the wafer has an exposed portion of an insulator layer, but none of the semiconductor layer. The first active region of the wafer includes a first portion of the semiconductor layer and a first portion of the insulator layer. At least one conductor is formed in contact with the first portion of the semiconductor layer, such that the conductor and the first portion of the semiconductor layer form a portion of an electrical circuit. The first active region of the wafer is selectively treated to remove a native oxide layer from the first portion of the semiconductor layer. A resulting wafer is also disclosed.
    Type: Application
    Filed: December 13, 2021
    Publication date: March 31, 2022
    Applicants: Quantum Silicon Inc., The Governors of the University of Alberta, National Research Council of Canada
    Inventors: Bruno Vieira Da Cunha Martins, Robert A. Wolkow, Marco Taucer, Jason Pitters
  • Patent number: 11232976
    Abstract: A method for treating a wafer is provided with a portion of a semiconductor layer is selectively removed from the wafer so as to create an inactive region of the wafer surrounding a first active region of the wafer. The inactive region of the wafer has an exposed portion of an insulator layer, but none of the semiconductor layer. The first active region of the wafer includes a first portion of the semiconductor layer and a first portion of the insulator layer. At least one conductor is formed in contact with the first portion of the semiconductor layer, such that the conductor and the first portion of the semiconductor layer form a portion of an electrical circuit. The first active region of the wafer is selectively treated to remove a native oxide layer from the first portion of the semiconductor layer. A resulting wafer is also disclosed.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: January 25, 2022
    Assignees: National Research Council of Canada, The Governors of the University of Alberta, Quantum Silicon Inc.
    Inventors: Bruno Vieira Da Cunha Martins, Robert A. Wolkow, Marco Taucer, Jason Pitters
  • Publication number: 20210373045
    Abstract: A method for assessing the quality of a tip of a scanning probe microscope (SPM) includes recording an SPM image, extracting a plurality of images of dangling bonds from the SPM image, feeding the extracted images of dangling bonds into a convolution neural network one image at a time, analyzing each of the plurality of images of dangling bonds using the convolution neural network, assigning each of the plurality of images of dangling bonds one of a sharp tip status or a double tip status, and determining whether the number of the plurality of images of dangling bonds of the SPM image assigned the double tip status exceeds a predetermined threshold. A method of automatically conditioning a tip of a scanning probe microscope (SPM) during imaging of a sample and a method of mass-producing atomistic quantum dots, qubits, or particular atom orbital occupation are also provided.
    Type: Application
    Filed: March 19, 2019
    Publication date: December 2, 2021
    Applicants: Quantum Silicon Inc., The Governors of the University of Alberta
    Inventors: Mohammad Rashidi, Robert Wolkow
  • Publication number: 20210325429
    Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Applicants: Quantum Silicon Inc., National Research Council of Canada, The University of British Columbia
    Inventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus, Jason Pitters, Roshan Achal
  • Publication number: 20210272625
    Abstract: An atomic orbital based memory storage is provided that includes a plurality of surface atoms forming dangling bonds (DBs) and a subset of the plurality of surface atoms passivated with spatial control to form covalent bonds with hydrogen, deuterium, or a combination thereof. The atomic orbital based data storage that can be rewritten and corrected as needed. The resulting data storage is also archival and capable of high data densities than any known storage as the data is retained in a binary storage or a given orbital being passivated or a dangling bond (DB). A method of forming and reading the atomic orbital data storage is also provided. The method including selectively removing covalent bonds to form dangling bonds (DBs) extending from a surface atom by hydrogen lithography and imaging the covalent bonds spatially to read the atomic orbital data storage.
    Type: Application
    Filed: June 19, 2019
    Publication date: September 2, 2021
    Applicants: National Research Council of Canada, Quantum Silicon Inc., The Governors of the University of Alberta
    Inventors: Roshan Achal, Robert A. Wolkow, Jason Pitters, Martin Cloutier, Mohammad Rashidi, Marco Taucer, Taleana Huff
  • Patent number: 11047877
    Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 29, 2021
    Assignee: Quantum Silicon Inc.
    Inventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus
  • Publication number: 20210184115
    Abstract: A multiple-atom germanium quantum dot is provided that includes multiple dangling bonds on an otherwise H-terminated germanium surface, each dangling bonds having one of three ionization states of +1, 0 or ?1 and corresponding respectively to 0, 1, or 2 electrons in a dangling bond state. The dangling bonds together in close proximity and having the dangling bond states energetically in the germanium band gap with selective control of the ionization state of one of the dangling bonds. A new class of electronics elements is provided through the inclusion of at least one input and at least one output to the multiple dangling bonds. Selective modification or creation of a dangling bond is also detailed.
    Type: Application
    Filed: February 4, 2021
    Publication date: June 17, 2021
    Applicant: Quantum Silicon Inc.
    Inventors: Robert A. Wolkow, Roshan Achal, Taleana Huff, Hatem Labidi, Lucian Livadaru, Paul Piva, Mohammad Rashidi
  • Publication number: 20210159116
    Abstract: A method for treating a wafer is provided with a portion of a semiconductor layer is selectively removed from the wafer so as to create an inactive region of the wafer surrounding a first active region of the wafer. The inactive region of the wafer has an exposed portion of an insulator layer, but none of the semiconductor layer. The first active region of the wafer includes a first portion of the semiconductor layer and a first portion of the insulator layer. At least one conductor is formed in contact with the first portion of the semiconductor layer, such that the conductor and the first portion of the semiconductor layer form a portion of an electrical circuit. The first active region of the wafer is selectively treated to remove a native oxide layer from the first portion of the semiconductor layer. A resulting wafer is also disclosed.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 27, 2021
    Applicants: Quantum Silicon Inc., The Governors of the University of Alberta, National Research Council of Canada
    Inventors: Bruno Vieira Da Cunha Martins, Robert A. Wolkow, Marco Taucer, Jason Pitters
  • Patent number: 10937959
    Abstract: A multiple-atom silicon quantum dot is provided that includes multiple dangling bonds on an otherwise H-terminated silicon surface, each dangling bonds having one of three ionization states of +1, 0 or ?1 and corresponding respectively to 0, 1, or 2 electrons in a dangling bond state. The dangling bonds together in close proximity and having the dangling bond states energetically in the silicon band gap with selective control of the ionization state of one of the dangling bonds. A new class of electronics elements is provided through the inclusion of at least one input and at least one output to the multiple dangling bonds. Selective modification or creation of a dangling bond is also detailed.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: March 2, 2021
    Assignee: QUANTUM SILICON INC.
    Inventors: Robert A. Wolkow, Roshan Achal, Taleana Huff, Hatem Labidi, Lucian Livadaru, Paul Piva, Mohammad Rashidi
  • Publication number: 20200249256
    Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 6, 2020
    Applicant: Quantum Silicon Inc.
    Inventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus
  • Patent number: 9704101
    Abstract: A quantum device is provided that includes controllably quantum mechanically coupled dangling bonds extending from a surface of a semiconductor material. Each of the controllably quantum mechanically coupled dangling bonds has a separation of at least one atom of the semiconductor material. At least one electrode is provided for selectively modifying an electronic state of the controllably quantum mechanically coupled dangling bonds. By providing at least one additional electron within the controllably quantum mechanically coupled dangling bonds with the proviso that there exists at least one unoccupied dangling bond for each one additional electron present, the inventive device is operable at least to 293 degrees Kelvin and is largely immune to stray electrostatic perturbations. Room temperature operable quantum cellular automata and qubits are constructed therefrom.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: July 11, 2017
    Assignees: National Research Council of Canada, The Governors of the University of Alberta
    Inventors: Gino A. Dilabio, Robert A. Wolkow, Jason L. Pitters, Paul G. Piva
  • Publication number: 20160307112
    Abstract: A quantum device is provided that includes controllably quantum mechanically coupled dangling bonds extending from a surface of a semiconductor material. Each of the controllably quantum mechanically coupled dangling bonds has a separation of at least one atom of the semiconductor material. At least one electrode is provided for selectively modifying an electronic state of the controllably quantum mechanically coupled dangling bonds. By providing at least one additional electron within the controllably quantum mechanically coupled dangling bonds with the proviso that there exists at least one unoccupied dangling bond for each one additional electron present, the inventive device is operable at least to 293 degrees Kelvin and is largely immune to stray electrostatic perturbations. Room temperature operable quantum cellular automata and qubits are constructed therefrom.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Inventors: Gino A. Dilabio, Robert A. Wolkow, Jason L. Pitters, Paul G. Piva
  • Patent number: 9400957
    Abstract: A quantum device is provided that includes controllably quantum mechanically coupled dangling bonds extending from a surface of a semiconductor material. Each of the controllably quantum mechanically coupled dangling bonds has a separation of at least one atom of the semiconductor material. At least one electrode is provided for selectively modifying an electronic state of the controllably quantum mechanically coupled dangling bonds. By providing at least one additional electron within the controllably quantum mechanically coupled dangling bonds with the proviso that there exists at least one unoccupied dangling bond for each one additional electron present, the inventive device is operable at least to 293 degrees Kelvin and is largely immune to stray electrostatic perturbations. Room temperature operable quantum cellular automata and qubits are constructed therefrom.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: July 26, 2016
    Assignees: National Research Council of Canada, The Governors of the University of Alberta
    Inventors: Gino A. Dilabio, Robert A. Wolkow, Jason L. Pitters, Paul G. Piva
  • Publication number: 20160140450
    Abstract: A quantum device is provided that includes controllably quantum mechanically coupled dangling bonds extending from a surface of a semiconductor material. Each of the controllably quantum mechanically coupled dangling bonds has a separation of at least one atom of the semiconductor material. At least one electrode is provided for selectively modifying an electronic state of the controllably quantum mechanically coupled dangling bonds. By providing at least one additional electron within the controllably quantum mechanically coupled dangling bonds with the proviso that there exists at least one unoccupied dangling bond for each one additional electron present, the inventive device is operable at least to 293 degrees Kelvin and is largely immune to stray electrostatic perturbations. Room temperature operable quantum cellular automata and qubits are constructed therefrom.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 19, 2016
    Inventors: Gino A. Dilabio, Robert A. Wolkow, Jason L. Pitters, Paul G. Piva
  • Patent number: 9213945
    Abstract: A quantum device is provided that includes controllably quantum mechanically coupled dangling bonds extending from a surface of a semiconductor material. Each of the controllably quantum mechanically coupled dangling bonds has a separation of at least one atom of the semiconductor material. At least one electrode is provided for selectively modifying an electronic state of the controllably quantum mechanically coupled dangling bonds. By providing at least one additional electron within the controllably quantum mechanically coupled dangling bonds with the proviso that there exists at least one unoccupied dangling bond for each one additional electron present, the inventive device is operable at least to 293 degrees Kelvin and is largely immune to stray electrostatic perturbations. Room temperature operable quantum cellular automata and qubits are constructed thereform.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: December 15, 2015
    Assignees: National Research Council of Canada, The Governors of The University of Alberta
    Inventors: Gino A. Dilabio, Robert A. Wolkow, Jason L. Pitters, Paul G. Piva
  • Publication number: 20150060771
    Abstract: A quantum device is provided that includes controllably quantum mechanically coupled dangling bonds extending from a surface of a semiconductor material. Each of the controllably quantum mechanically coupled dangling bonds has a separation of at least one atom of the semiconductor material. At least one electrode is provided for selectively modifying an electronic state of the controllably quantum mechanically coupled dangling bonds. By providing at least one additional electron within the controllably quantum mechanically coupled dangling bonds with the proviso that there exists at least one unoccupied dangling bond for each one additional electron present, the inventive device is operable at least to 293 degrees Kelvin and is largely immune to stray electrostatic perturbations. Room temperature operable quantum cellular automata and qubits are constructed thereform.
    Type: Application
    Filed: July 31, 2014
    Publication date: March 5, 2015
    Applicants: The Governors of the University of Alberta, National Research Council of Canada
    Inventors: Gino A. Dilabio, Robert A. Wolkow, Jason L. Pitters, Paul G. Piva