Patents by Inventor Robert Achim Domröse

Robert Achim Domröse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914341
    Abstract: The invention relates to a computer-assisted method for generating a control data set for an additive layer manufacturing device. In a first step, a layer data set is accessed, wherein points are marked in the data model which correspond to an object cross-section and at which the bid-up material should be solidified. In a second step, the layer data set is modified in such a way that for at least a portion of the object cross-section, the number of beams required for solidifying the build-up material inside said portion is determined preferably automatically, according to quality specifications of the portion and/or a manufacturing time of the object. In a third step, the modified layer data set is provided as a control data set for the additive layer manufacturing device.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: February 27, 2024
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Martin Schade, Albert Fruth, Robert Achim Domröse, Maximilian Mittermüller, Michael Göth, Markus Kuchenbaur, Michael Kowal
  • Publication number: 20230094578
    Abstract: A method for determining a distance in an additive manufacturing device includes emitting a number of directed beams using a number of beam sources, detecting at least one of the directed beams from a first beam source using a first detector and generating a signal in dependence on the at least one beam impinging on the least one detector, wherein a recoating element is spatially arranged between the first beam source and the first detector, and determining a distance between a boundary of the recoating element and a surface of a building base and/or an article placed on the building base, based on the signal generated by the detector and using an evaluation unit.
    Type: Application
    Filed: February 16, 2021
    Publication date: March 30, 2023
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Ulrich Kleinhans, Robert Achim Domroese, Dominik Kunz
  • Patent number: 11141923
    Abstract: Disclosed is a method of determining a quality indicator of an object that has been manufactured by layer-wise additive manufacturing. The method includes providing a first dataset that is assigned to a process monitoring device, detecting a relative frequency of occurrence of a process irregularity in a layer and of assigning a grade indicator value to the solidified object cross-section in a layer according to the detected relative frequency, generating a second dataset, in which a grade indicator value is assigned to the object cross-section in each of said several layers following upon one another, and determining a quality indicator by using the second dataset (or several further datasets).
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: October 12, 2021
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Robert Achim Domröse, Pilvi Ylander, Katri Kakko, Kevin Minet, Tatu Syvänen, Dominik Wolf
  • Publication number: 20210122117
    Abstract: A control method serves for controlling at least one solidification device of an additive manufacturing device for manufacturing a three-dimensional object by means of an additive layer build method in which at least one object is manufactured by repeated application of a layer of a building material, to a build area and by selective solidification of the applied layer at positions corresponding to a cross-section of the object to be manufactured, wherein a gas having a plurality of flow directions which essentially are not aligned in the same direction flows across the build area.
    Type: Application
    Filed: March 29, 2018
    Publication date: April 29, 2021
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Martin Schade, Robert Achim Domröse, Martin Leuterer, Michael Göth, Maximilian Mittermüller, Markus Kuchenbaur
  • Publication number: 20210114111
    Abstract: The invention relates to a computer-assisted method for generating a control data set for an additive layer manufacturing device. In a first step, a layer data set is accessed, wherein points are marked in the data model which correspond to an object cross-section and at which the bid-up material should be solidified. In a second step, the layer data set is modified in such a way that for at least a portion of the object cross-section, the number of beams required for solidifying the build-up material inside said portion is determined preferably automatically, according to quality specifications of the portion and/or a manufacturing time of the object. In a third step, the modified layer data set is provided as a control data set for the additive layer manufacturing device.
    Type: Application
    Filed: March 7, 2018
    Publication date: April 22, 2021
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Martin Schade, Albert Fruth, Robert Achim Domröse, Maximilian Mittermüller, Michael Göth, Markus Kuchenbaur, Michael Kowal
  • Patent number: 10946581
    Abstract: Method for calibrating an apparatus for manufacturing a three-dimensional object by layer-wise selective solidification of building material with the step of generating an substantially periodic first modulation pattern in a first sub-area of the build area, the step of generating an substantially periodic second modulation pattern in a second sub-area of the build area, wherein in the overlap zone, the first modulation pattern and the second modulation pattern form an substantially periodic superposition pattern, whose period is larger than the period of the first modulation pattern and the period of the second modulation pattern, the step of detecting the superposition pattern, and the step of determining the deviation of the position of the superposition pattern on the build area from a reference position.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 16, 2021
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Robert Achim Domröse, Dominik Wolf, Michael Göth, Ulrich Schmid, Maximilian Mittermüller
  • Patent number: 10682700
    Abstract: A device is disclosed for producing a three-dimensional object by layerwise construction. The device contains a flow device for generating a gas flow above an applied layer of the building material by means of a nozzle element for introducing the gas into the device. The nozzle element includes a body with a gas inlet side and a gas outlet side, and channels which penetrate the body from the gas inlet side to the gas outlet side, provided with inlet openings on the gas inlet side and gas outlet openings on the gas outlet side, and which are separated by walls. The length of the channels is selected such that a laminar flow is formed at the gas outlet side.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 16, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Olli Nyrhilä, Alexander Schilling, Jörg Hamann, Robert Achim Domröse, Dominik Wolf, Tatu Syvänen, Kevin Minet
  • Patent number: 10414095
    Abstract: An exposure control device serves for equipping and/or retrofitting a generative layer-wise building device. The exposure control device has a first data output interface, at which control commands can be output to the exposure device. The control commands specify one of a plurality of exposure types defined by a predetermined combination of a radiation energy density to be emitted by the exposure device and a scanning pattern with which the radiation is being directed to a region of a layer of the building material. The exposure control device also includes a second data output interface at which an exposure type can be output in real time in relation to a timing of the output of a control command specifying this exposure type.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 17, 2019
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Markus Frohnmaier, Michael Göth, Robert Achim Domröse, Stefan Fröbe, Joachim Wichner, Harald Häger
  • Publication number: 20190248078
    Abstract: Disclosed is a method of determining a quality indicator of an object that has been manufactured by layer-wise additive manufacturing . The method includes providing a first dataset that is assigned to a process monitoring device, detecting a relative frequency of occurrence of a process irregularity in a layer and of assigning a grade indicator value to the solidified object cross-section in a layer according to the detected relative frequency, generating a second dataset, in which a grade indicator value is assigned to the object cross-section in each of said several layers following upon one another, and determining a quality indicator by using the second dataset (or several further datasets).
    Type: Application
    Filed: July 7, 2017
    Publication date: August 15, 2019
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Robert Achim DOMRÖSE, Pilvi YLANDER, Katri KAKKO, Kevin MINET, Tatu SYVÄNEN, Dominik WOLF
  • Publication number: 20180370146
    Abstract: Method for calibrating an apparatus for manufacturing a three-dimensional object by layer-wise selective solidification of building material with the step of generating an substantially periodic first modulation pattern in a first sub-area of the build area, the step of generating an substantially periodic second modulation pattern in a second sub-area of the build area, wherein in the overlap zone, the first modulation pattern and the second modulation pattern form an substantially periodic superposition pattern, whose period is larger than the period of the first modulation pattern and the period of the second modulation pattern, the step of detecting the superposition pattern, and the step of determining the deviation of the position of the superposition pattern on the build area from a reference position.
    Type: Application
    Filed: December 20, 2016
    Publication date: December 27, 2018
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Robert Achim Domröse, Dominik Wolf, Michael Göth, Ulrich Schmid, Maximilian Mittermüller
  • Publication number: 20180001563
    Abstract: An exposure control device (31) serves for equipping and/or retrofitting a generative layer-wise building device (1). The latter comprises an exposure device (20) which emits electromagnetic radiation (22) or particle radiation and is configured to irradiate positions to be solidified in a layer in such a way that after cooling they exist as an object cross-section or part of the same. The exposure control device (31) has a first data output interface (36), at which control commands can be output to the exposure device (20). The control commands which are output specify one of a plurality of exposure types wherein an exposure type is defined by a predetermined combination of a radiation energy density to be emitted by the exposure device (20) and a scanning pattern with which the radiation (22) is being directed to a region of a layer of the building material (15).
    Type: Application
    Filed: June 20, 2017
    Publication date: January 4, 2018
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Markus Frohnmaier, Michael Göth, Robert Achim Domröse, Stefan Fröbe, Joachim Wichner, Harald Häger
  • Publication number: 20170216916
    Abstract: A device (1), for producing a three-dimensional object (2) by solidifying, layer-by-layer, building material (13) at locations in the respective layer corresponding to the cross-section of the object (2) to be produced, contains a flow device (31, 32, 34, 35) for generating a gas flow above an applied layer of the building material (13) by means of a nozzle element (40) for introducing the gas into the device. The nozzle element (40) comprises a body (41) with a gas inlet side and a gas outlet side (46), and a plurality of channels (42) which penetrate the body from the gas inlet side (44) to the gas outlet side (46), are provided with inlet openings on the gas inlet side (44) and with gas outlet openings (47) on the gas outlet side (46), and which are separated by walls (43). The length of the channels (42) is selected such that therein a laminar flow is formed at the gas outlet side (46).
    Type: Application
    Filed: March 27, 2015
    Publication date: August 3, 2017
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Olli Nyrhilä, Alexander Schilling, Jörg Hamann, Robert Achim Domröse, Dominik Wolf, Tatu Syvänen, Kevin Minet