Patents by Inventor Robert Alan Fleming

Robert Alan Fleming has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9577864
    Abstract: In a software receiver, a received electromagnetic signal is sampled in “slices”, each having a duration of some multiple of a reference frequency. The samples of each slice are correlated with values in a pair of reference signals, such as sine and cosine, at the reference frequency. This yields a two-tuple for each slice, which two-tuples may be stored. The stored two-tuples can be simply added to arrive at a correlation value of narrower bandwidth than that of any slice taken alone. The stored two-tuples can be taken in sequence, each rotated by some predetermined angle relative to its predecessor in sequence, and the rotated two-tuples summed to arrive at a correlation value with respect to a frequency that is offset from the reference frequency to an extent that relates to the predetermined angle. In this way, the receiver is able to proceed despite the transmitted frequency not being known exactly in advance and does not require prodigious storage or computational resources.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: February 21, 2017
    Assignee: Proteus Digital Health, Inc.
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner, William McAllister, Mark Zdeblick
  • Publication number: 20160285564
    Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.
    Type: Application
    Filed: June 9, 2016
    Publication date: September 29, 2016
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Publication number: 20160226697
    Abstract: In a software receiver, a received electromagnetic signal is sampled in “slices”, each having a duration of some multiple of a reference frequency. The samples of each slice are correlated with values in a pair of reference signals, such as sine and cosine, at the reference frequency. This yields a two-tuple for each slice, which two-tuples may be stored. The stored two-tuples can be simply added to arrive at a correlation value of narrower bandwidth than that of any slice taken alone. The stored two-tuples can be taken in sequence, each rotated by some predetermined angle relative to its predecessor in sequence, and the rotated two-tuples summed to arrive at a correlation value with respect to a frequency that is offset from the reference frequency to an extent that relates to the predetermined angle. In this way, the receiver is able to proceed despite the transmitted frequency not being known exactly in advance and does not require prodigious storage or computational resources.
    Type: Application
    Filed: October 3, 2014
    Publication date: August 4, 2016
    Inventors: Cherie Elaine Kushner, Robert Alan Fleming, Mark Zdeblick
  • Patent number: 9369214
    Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: June 14, 2016
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Publication number: 20140177394
    Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.
    Type: Application
    Filed: December 24, 2012
    Publication date: June 26, 2014
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Patent number: 8369185
    Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.
    Type: Grant
    Filed: November 5, 2011
    Date of Patent: February 5, 2013
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Publication number: 20120113755
    Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.
    Type: Application
    Filed: November 5, 2011
    Publication date: May 10, 2012
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Patent number: 8094518
    Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 10, 2012
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Publication number: 20080304362
    Abstract: Taps on a beam-interrupt button of an underwater signaling transceiver are encoded as binary frequency shift-key modulated Golay codes, which are transmitted via 56-58 kHz compression waves generated by a ring-shaped electromechanical transducer. Light emitting diodes flash to signal the content of received signals and provide monitoring of the distance between divers. All components of the transceiver—except outer portions of input/output leads and a suction cup for attaching to the transceiver to a diver's mask—are completely encased in transparent plastic. The input/output leads allow an internal battery to be recharged, provide access to the internal processor for programming and data retrieval, and monitor whether the transceiver is submerged so that the transceiver can operate in an underwater mode or an above-water mode. Transceivers only communicate with other transceivers which use the same communication channel.
    Type: Application
    Filed: May 15, 2008
    Publication date: December 11, 2008
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Patent number: 6795491
    Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: September 21, 2004
    Assignee: Aether Wire & Location
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Patent number: 6757323
    Abstract: Spread spectrum transceivers communicate using code sequences having low cross-correlations and well-peaked autocorrelations. The initial communications involve broadcasting a beacon signal consisting of a beacon packet repeated at regular intervals (the cycle time). The code sequences may be period-(2n−1) Small Kasami sequences; the beacon packet is a repeated series of (2n/2+1) period-(2n/2−1) progenitor maximal sequences, and behaves like a member of the Kasami family. The acyclic autocorrelation of the beacon packet has regularly-spaced sharp peaks modulated by a pyramidal envelope. The initial communications involve calculating the correlation between the received signal and delayed versions of an internally-generated beacon packet. The length of the initial communications is proportional to the square of the cycle time divided by the width of the acyclic autocorrelation.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: June 29, 2004
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Patent number: 6400754
    Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by measuring propagation times of pseudorandom sequences of electromagnetic impulses. The propagation time is determined from a correlator which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. Using pattern recognition the arrival time of the received signal can be determined to within a time much smaller than the separation between bins. Because operation of standard CMOS circuitry generates noise over a large frequency range, only low-noise circuitry operates during transmission and reception. A stage in the low-frequency clock uses low-noise circuitry during transmissions and receptions, and standard circuitry at other times.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: June 4, 2002
    Assignee: Aether Wire & Location, Inc.
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Patent number: 6385268
    Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: May 7, 2002
    Assignee: Aether-Wire & Technology
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Publication number: 20010053174
    Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by measuring propagation times of pseudorandom sequences of electromagnetic impulses. The propagation time is determined from a correlator which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. Using pattern recognition the arrival time of the received signal can be determined to within a time much smaller than the separation between bins. Because operation of standard CMOS circuitry generates noise over a large frequency range, only low-noise circuitry operates during transmission and reception. A stage in the low-frequency clock uses low-noise circuitry during transmissions and receptions, and standard circuitry at other times.
    Type: Application
    Filed: December 7, 2000
    Publication date: December 20, 2001
    Applicant: Aether Wire & Location
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Publication number: 20010033607
    Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.
    Type: Application
    Filed: December 11, 2000
    Publication date: October 25, 2001
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Patent number: 6002708
    Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: December 14, 1999
    Assignee: Aether Wire & Location, Inc.
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner
  • Patent number: 5748891
    Abstract: A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: May 5, 1998
    Assignee: Aether Wire & Location
    Inventors: Robert Alan Fleming, Cherie Elaine Kushner