Patents by Inventor Robert Alan Rose

Robert Alan Rose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5863870
    Abstract: An iron or copper based metal powder useful for plasma deposition of a coating that has a dry coefficient of friction 0.75 or less and readily conducts heat through the coating. The powder comprises (a) H.sub.2 O atomized and annealed particles consisting essentially of (by weight) carbon 0.15-0.85%, oxygen 0.1-0.45%, an air hardening agent selected from manganese and nickel of 0.1-06.5%, and the remainder iron or copper, with at least 90% of the particles having oxygen and iron or copper combined in the lowest atomic oxygen form for an oxide of such metal.A method of making anti-friction iron powder that is economical, selectively produces FeO and promotes fine flowable particles. The method comprises (a) steam atomization of a molten steel that excludes other oxygen, the steel containing carbon up to 0.4% by weight to produce a collection of comminuted particles, and (b) annealing the particles in an air atmosphere for a period of time of 0.25-2.0 hours in a temperature range of 800.degree.-1400.degree. F.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: January 26, 1999
    Assignee: Ford Global Technologies, Inc.
    Inventors: V. Durga Nageswar Rao, Robert Alan Rose, David Alan Yeager, Carlo Alberto Fucinari
  • Patent number: 5846349
    Abstract: An iron or copper based metal powder useful for plasma deposition of a coating that has a dry coefficient of friction 0.75 or less and readily conducts heat through the coating. The powder comprises (a) H.sub.2 O atomized and annealed particles consisting essentially of (by weight) carbon 0.15-0.85%, oxygen 0.1-0.45%, an air hardening agent selected from manganese and nickel of 0.1-6.5%, and the remainder iron or copper, with at least 90% of the particles having oxygen and iron or copper combined in the lowest atomic oxygen form for an oxide of such metal.A method of making anti-friction iron powder that is economical, selectively produces FeO and promotes fine flowable particles. The method comprises (a) steam atomization of a molten steel that excludes other oxygen, the steel containing carbon up to 0.4% by weight to produce a collection of comminuted particles, and (b) annealing the particles in an air atmosphere for a period of time of 0.25-2.0 hours in a temperature range of 800.degree.-1400.degree. F.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: December 8, 1998
    Assignee: Ford Global Technologies, Inc.
    Inventors: V. Durga Nageswar Rao, Robert Alan Rose, David Alan Yeager, Carlo Alberto Fucinari
  • Patent number: 5671532
    Abstract: A method of making coated engine blocks by (a) casting a metallic engine block having one or more cylinder bores; (b) fabricating a thin walled liner for each bore, the liner being constituted of extruded metallic tubing having a cleansed inner surface, a wall thickness controlled to a thickness of 1-3 mm.+-.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: September 30, 1997
    Assignee: Ford Global Technologies, Inc.
    Inventors: V. Durga Nageswar Rao, Robert Alan Rose, David Alan Yeager, Daniel Michael Kabat
  • Patent number: 5663124
    Abstract: An iron or copper based metal powder useful for plasma deposition of a coating that has a dry coefficient of friction 0.75 or less and readily conducts heat through the coating. The powder comprises (a) H.sub.2 O atomized and annealed particles consisting essentially of (by weight) carbon 0.15-85%, oxygen 0.1-0.45%, an air hardening agent selected from manganese and nickel of 0.1-6.5%, and the remainder iron or copper, with at least 90% of the particles having oxygen and iron or copper combined in the lowest atomic oxygen form for an oxide of such metal.A method of making anti-friction iron powder that is economical, selectively produces FeO and promotes fine flowable particles. The method comprises (a) steam atomization of a molten steel that excludes other oxygen, the steel containing carbon up to 0.4% by weight to produce a collection of comminuted particles, and (b) annealing the particles in an air atmosphere for a period of time of 0.25-2.0 hours in a temperature range of 800.degree.-1400.degree. F.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: September 2, 1997
    Assignee: Ford Global Technologies, Inc.
    Inventors: V. Durga Nageswar Rao, Robert Alan Rose, David Alan Yeager, Carlo Alberto Fucinari
  • Patent number: 5648122
    Abstract: A method of preparing the surface of a conductive metal to be non-smooth and non-passivated for reception of thermal sprayed coatings. The method comprises melting and rapidly solidifying globules of the surface by electrical discharge by bring an electrode (anode) in close gap-sparking proximity to the surface, filling the gap with an electrolyte containing a halogenated hydrocarbon fluid present in an amount of 2-5% of the electrolyte, and imposing a pulsed DC voltage (i.e. 20-100 volts at 40-200 amps) on the electrode to provide cyclical sparking between the electrode and the surface through the electrolyte resulting in a breakdown of the hydrocarbon to release nascent halogen atoms which attack the surface to prevent passivation during melting and solidification of the globules. The electrolyte is preferably cooled to a temperature below 65.degree. F.
    Type: Grant
    Filed: September 28, 1994
    Date of Patent: July 15, 1997
    Assignee: Ford Motor Company
    Inventors: V. Durga Nageswar Rao, Robert Alan Rose, Robert S. Parsons, David Alan Yeager