Patents by Inventor Robert Allen Olah

Robert Allen Olah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8823210
    Abstract: An apparatus for perpetually harvesting ambient near ultraviolet to far infrared radiation to provide continual power regardless of the environment, incorporating a system for the harvesting electronics governing power management, storage control, and output regulation. The harvesting electronics address issues of efficiently matching the voltage and current characteristics of the different harvested energy levels, low power consumption, and matching the power output demand. The device seeks to harvest the largely overlooked blackbody radiation through use of a thermal harvester, providing a continuous source of power, coupled with a solar harvester to provide increased power output.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: September 2, 2014
    Assignee: Banpil Photonics, Inc.
    Inventors: Robert Allen Olah, Achyut Kumar Dutta
  • Patent number: 7972885
    Abstract: This invention relates to imaging device and its related transferring technologies to independent substrate able to attain significant broadband capability covering the wavelengths from ultra-violet (UV) to long-Infrared. More particularly, this invention is related to the broadband image sensor (along with its manufacturing technologies), which can detect the light wavelengths ranges from as low as UV to the wavelengths as high as 20 ?m covering the most of the wavelengths using of the single monolithic image sensor on the single wafer. This invention is also related to the integrated circuit and the bonding technologies of the image sensor to standard integrated circuit for multicolor imaging, sensing, and advanced communication. Our innovative approach utilizes surface structure having more than micro-nano-scaled 3-dimensional (3-D) blocks which can provide broad spectral response.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: July 5, 2011
    Assignee: Banpil Photonics, Inc.
    Inventors: Achyut Kumar Dutta, Robert Allen Olah
  • Patent number: 6816057
    Abstract: A switch for routing input signals from any of N input terminals to one or more of M output terminals includes a high-speed N×M crosspoint switch array providing the necessary signal paths. Each of a set of N input drivers buffers a separate one of the input signals into the crosspoint array and each of a set of M output drivers buffers an array output signal onto a separate one of the output terminals. The crosspoint switch array is horizontally and/or vertically segmented by input and output buffers to limit the amount of the array's capacitance that each input driver must charge and discharge when the input signals change state, thereby reducing signal path delay through the crosspoint array.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: November 9, 2004
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Robert Allen Olah, William E. Moss
  • Publication number: 20020097140
    Abstract: A switch for routing input signals from any of N input terminals to one or more of M output terminals includes a high-speed N×M crosspoint switch array providing the necessary signal paths. Each of a set of N input drivers buffers a separate one of the input signals into the crosspoint array and each of a set of M output drivers buffers an array output signal onto a separate one of the output terminals. The crosspoint switch array is horizontally and/or vertically segmented by input and output buffers to limit the amount of the array's capacitance that each input driver must charge and discharge when the input signals change state, thereby reducing signal path delay through the crosspoint array.
    Type: Application
    Filed: January 19, 2001
    Publication date: July 25, 2002
    Inventors: Robert Allen Olah, William E. Moss