Patents by Inventor Robert B. Calhoun

Robert B. Calhoun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11688037
    Abstract: Systems and methods that yield highly-accurate classification of acoustic and other non-image events, involving pre-processing data from one or more transducers and generating a visual representation of the source as well as associated features and processing, are disclosed. According to certain exemplary implementations herein, such pre-processing steps may be utilized in situations where 1) all impulsive acoustic events have many features in common due to their point source origin and impulsive nature, and/or 2) the error rates that are considered acceptable in general purpose image classification are much higher than the acceptable levels in automatic impulsive incident classification. Further, according to some aspects, the data may be pre-processed in various ways, such as to remove extraneous or irrelevant details and/or perform any required rotation, alignment, scaling, etc. tasks, such that these tasks do not need to be “learned” in a less direct and more expensive manner in the neural network.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: June 27, 2023
    Assignee: ShotSpotter, Inc.
    Inventors: Robert B. Calhoun, Scott Lamkin, David Rodgers
  • Publication number: 20220180474
    Abstract: Systems and methods that yield highly-accurate classification of acoustic and other non-image events, involving pre-processing data from one or more transducers and generating a visual representation of the source as well as associated features and processing, are disclosed. According to certain exemplary implementations herein, such pre-processing steps may be utilized in situations where 1) all impulsive acoustic events have many features in common due to their point source origin and impulsive nature, and/or 2) the error rates that are considered acceptable in general purpose image classification are much higher than the acceptable levels in automatic impulsive incident classification. Further, according to some aspects, the data may be pre-processed in various ways, such as to remove extraneous or irrelevant details and/or perform any required rotation, alignment, scaling, etc. tasks, such that these tasks do not need to be “learned” in a less direct and more expensive manner in the neural network.
    Type: Application
    Filed: October 12, 2021
    Publication date: June 9, 2022
    Inventors: Robert B. Calhoun, Scott Lamkin, David Rodgers
  • Patent number: 11004175
    Abstract: Systems and methods that yield highly-accurate classification of acoustic and other non-image events, involving pre-processing data from one or more transducers and generating a visual representation of the source as well as associated features and processing, are disclosed. According to certain exemplary implementations herein, such pre-processing steps may be utilized in situations where 1) all impulsive acoustic events have many features in common due to their point source origin and impulsive nature, and/or 2) the error rates that are considered acceptable in general purpose image classification are much higher than the acceptable levels in automatic impulsive incident classification. Further, according to some aspects, the data may be pre-processed in various ways, such as to remove extraneous or irrelevant details and/or perform any required rotation, alignment, scaling, etc. tasks, such that these tasks do not need to be “learned” in a less direct and more expensive manner in the neural network.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: May 11, 2021
    Assignee: ShotSpotter, Inc.
    Inventors: Robert B. Calhoun, Scott Lamkin, David Rodgers
  • Patent number: 10637424
    Abstract: Systems and methods for processing information present in a digital audio stream to obtain a measure of gain of an analog-to-digital converter (ADC) preamplifier are disclosed. In one implementation, a method of processing information present in a digitally sampled stream to obtain a measure of ADC preamplifier gain used to digitize the output of a known transducer comprises transforming time-domain digital samples into the frequency domain through use of a discrete Fourier transform (DFT), and using knowledge of the maximum effective frequency associated with the frequency response of the transducer to process frequency-domain data to obtain a measure of the gain of the ADC preamplifier.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: April 28, 2020
    Assignee: ShotSpotter, Inc.
    Inventors: Murphey L. Johnson, Mark A. Sompel, Robert B. Calhoun
  • Patent number: 10424048
    Abstract: Systems and methods that yield highly-accurate classification of acoustic and other non-image events, involving pre-processing data from one or more transducers and generating a visual representation of the source as well as associated features and processing, are disclosed. According to certain exemplary implementations herein, such pre-processing steps may be utilized in situations where 1) all impulsive acoustic events have many features in common due to their point source origin and impulsive nature, and/or 2) the error rates that are considered acceptable in general purpose image classification are much higher than the acceptable levels in automatic impulsive incident classification. Further, according to some aspects, the data may be pre-processed in various ways, such as to remove extraneous or irrelevant details and/or perform any required rotation, alignment, scaling, etc. tasks, such that these tasks do not need to be “learned” in a less direct and more expensive manner in the neural network.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: September 24, 2019
    Assignee: ShotSpotter, Inc.
    Inventors: Robert B. Calhoun, Scott Lamkin, David Rodgers
  • Patent number: 8369184
    Abstract: Systems and methods are disclosed associated with processing origin/location information of a source or event. In one exemplary implementation, there is provided a method of performing improved three-dimensional source location processing including constraint of location solutions to a two-dimensional plane. Moreover, the method includes obtaining a plane of constraint characterized as a plane in which the source is likely to occur, providing one or more virtual sensing elements each characterized as being located on a first side of the plane of constraint in a mirror image/symmetrical position across from a corresponding actual sensing element on an opposite side of the plane, and constraining possible origin locations to be located in the plane of constraint. Other exemplary implementations may include determining the origin location as a function of positions of the sensing elements and the virtual sensing elements as well as time-of-arrival and/or angle-of-arrival information.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: February 5, 2013
    Assignee: Shotspotter, Inc.
    Inventor: Robert B. Calhoun
  • Patent number: 8325563
    Abstract: Systems and methods are disclosed for locating a weapon fire incident such as an acoustic transient from a gunshot, explosion, weapons launch, etc. In one exemplary implementation, there is provided a method of locating the incident from a combination of propagation phenomena including a discharge time of the weapon fire incident. Moreover, the method may include obtaining a first propagation parameter of the incident from one or more first sensors, obtaining the discharge time from another sensor, and processing the data to determine a location using a common time basis among sensor measurements. According to further exemplary implementations, the discharge time may include a transient event that has a different propagation velocity than that of sound in the atmosphere.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: December 4, 2012
    Assignee: Shotspotter, Inc.
    Inventors: Robert B. Calhoun, Robert L. Showen, James G. Beldock, Scott M. Manderville, Jason W. Dunham
  • Publication number: 20120182837
    Abstract: Systems and methods are disclosed for locating a weapon fire incident such as an acoustic transient from a gunshot, explosion, weapons launch, etc. In one exemplary implementation, there is provided a method of locating the incident from a combination of propagation phenomena including a discharge time of the weapon fire incident. Moreover, the method may include obtaining a first propagation parameter of the incident from one or more first sensors, obtaining the discharge time from another sensor, and processing the data to determine a location using a common time basis among sensor measurements. According to further exemplary implementations, the discharge time may include a transient event that has a different propagation velocity than that of sound in the atmosphere.
    Type: Application
    Filed: May 27, 2008
    Publication date: July 19, 2012
    Inventors: Robert B. Calhoun, Robert L. Showen, James G. Beldock, Scott M. Manderville, Jason W. Dunham
  • Publication number: 20120170412
    Abstract: Systems and methods are disclosed that detect weapon firing/noise incidents in a region and/or include other related features. According to one or more embodiments, an exemplary method may include detecting acoustic signals from the region by one or more sensors, processing the detected acoustic signals to generate a processed signal, storing the detected acoustic signals with each sensor, and processing the processed signal associated with each sensor to determine if a weapon firing incident occurred. Moreover, exemplary methods may include, if unable to determine whether a weapon firing incident occurred, performing further processing of the acoustic signals and/or determining if a weapon firing incident occurred based upon the stored detected acoustic signals.
    Type: Application
    Filed: October 4, 2007
    Publication date: July 5, 2012
    Inventors: Robert B. Calhoun, David A. Rochberg, Elecia C. White, Jason W. Dunham
  • Patent number: 8134889
    Abstract: Systems and methods are disclosed for processing weapon fire information such as gunfire. In one exemplary implementation, there is provided a method of processing gunshot information to determine source location information involving echo/reflection processing features. Moreover, the method may include processing gunshot information received from a source at a sensor having a reflecting surface at a given distance, processing direct arrival time and echo arrival time information, and determining source location information as a function of a virtual sensor calculated behind the surface.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: March 13, 2012
    Assignee: ShotSpotter, Inc.
    Inventors: Robert L. Showen, Robert B. Calhoun, Jason W. Dunham
  • Patent number: 7961550
    Abstract: Systems and method are disclosed for processing signals. In one exemplary implementation, a method may include transforming initial bullet data associated with one or more sensors into a set of discrete pulses, dividing the discrete pulses into pulse subsets, generating, for the subsets, time domain representations of the pulses, wherein the time domain representations include waveforms having pulse features, and processing the time domain representations to determine alignment between one or more of pulse features, pulses, pairs of channels, and/or pairs of sensors. One or more further implementations may include determining identity of pulses in association with a matching process performed as a function of the alignment, as well as, optionally, other pulse processing features/functionality.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 14, 2011
    Assignee: Shotspotter, Inc.
    Inventor: Robert B. Calhoun
  • Publication number: 20100195445
    Abstract: Systems and methods are disclosed associated with processing origin/location information of a source or event. In one exemplary implementation, there is provided a method of performing improved three-dimensional source location processing including constraint of location solutions to a two-dimensional plane. Moreover, the method includes obtaining a plane of constraint characterized as a plane in which the source is likely to occur, providing one or more virtual sensing elements each characterized as being located on a first side of the plane of constraint in a mirror image/symmetrical position across from a corresponding actual sensing element on an opposite side of the plane, and constraining possible origin locations to be located in the plane of constraint. Other exemplary implementations may include determining the origin location as a function of positions of the sensing elements and the virtual sensing elements as well as time-of-arrival and/or angle-of-arrival information.
    Type: Application
    Filed: January 26, 2010
    Publication date: August 5, 2010
    Inventor: Robert B. Calhoun
  • Publication number: 20100118658
    Abstract: A gunshot location system computes candidate gunshot locations from angle-of-arrival information and time-of-arrival information provided by acoustic sensors. In addition to an angle, each sensor calculates an angular uncertainty from impulses received at four or more microphones having rotational symmetry. An intersection of one or more time-of-arrival hyperbolas with one or more angle-of-arrival beams is used to determine a candidate gunshot location. In simple environments, a location can be confirmed with just two sensors allowing sensor density to be significantly reduced, while in complex environments including reflections, blocking, and interfering acoustic events, the additional angle-of-arrival information improves location accuracy and confidence, allowing elimination of candidate locations inconsistent with the combined time-of-arrival and angle-of-arrival information.
    Type: Application
    Filed: October 5, 2009
    Publication date: May 13, 2010
    Inventors: Robert L. Showen, Robert B. Calhoun, Jason W. Dunham
  • Patent number: 7599252
    Abstract: A gunshot location system computes candidate gunshot locations [314] from angle-of-arrival information [304, 308] and time-of-arrival information [312] provided by acoustic sensors [300, 302]. In addition to an angle, each sensor calculates an angular uncertainty [306, 310] from impulses received at four or more microphones having rotational symmetry. An intersection of one or more time-of-arrival hyperbolas with one or more angle-of-arrival beams [322] is used to determine a candidate gunshot location. In simple environments, a location can be confirmed with just two sensors allowing sensor density to be significantly reduced, while in complex environments including reflections, blocking, and interfering acoustic events, the additional angle-of-arrival information improves location accuracy and confidence, allowing elimination of candidate locations inconsistent with the combined time-of-arrival and angle-of-arrival information.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: October 6, 2009
    Assignee: ShotSpotter, Inc.
    Inventors: Robert L Showen, Robert B. Calhoun, Jason W. Dunham
  • Publication number: 20090122650
    Abstract: Systems and method are disclosed for processing signals. In one exemplary implementation, a method may include transforming initial bullet data associated with one or more sensors into a set of discrete pulses, dividing the discrete pulses into pulse subsets, generating, for the subsets, time domain representations of the pulses, wherein the time domain representations include waveforms having pulse features, and processing the time domain representations to determine alignment between one or more of pulse features, pulses, pairs of channels, and/or pairs of sensors. One or more further implementations may include determining identity of pulses in association with a matching process performed as a function of the alignment, as well as, optionally, other pulse processing features/functionality.
    Type: Application
    Filed: September 2, 2008
    Publication date: May 14, 2009
    Applicant: Shotspotter, Inc.
    Inventor: Robert B. Calhoun
  • Patent number: 7474589
    Abstract: A gunshot location system computes candidate gunshot locations [314] from angle-of-arrival information [304, 308] and time-of-arrival information [312] provided by acoustic sensors [300, 302]. In addition to an angle, each sensor calculates an angular uncertainty [306, 310] from impulses received at four or more microphones having rotational symmetry. An intersection of one or more time-of-arrival hyperbolas with one or more angle-of-arrival beams [322] is used to determine a candidate gunshot location. In simple environments, a location can be confirmed with just two sensors allowing sensor density to be significantly reduced, while in complex environments including reflections, blocking, and interfering acoustic events, the additional angle-of-arrival information improves location accuracy and confidence, allowing elimination of candidate locations inconsistent with the combined time-of-arrival and angle-of-arrival information.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: January 6, 2009
    Assignee: Shotspotter, Inc.
    Inventors: Robert L. Showen, Robert B. Calhoun, Jason W. Dunham
  • Publication number: 20090002494
    Abstract: Systems and methods are disclosed for archiving and processing information from an array of remote sensors. Aspects of the innovations may be incorporated, for example, into a gunshot detection and location system to preserve sensor information surrounding a gunshot event for later review or analysis. According to one implementation, an exemplary method may including sampling video signals from the sensors and storing samples in a storage device such that the video signals detected from the sensors may be selected and/or reproduced. Other exemplary implementations may include creating a searchable database wherein the video information is indexed as a function of parameters, which may include data associated with the capture of video signals such as sensor information, time of capture, etc.
    Type: Application
    Filed: August 8, 2008
    Publication date: January 1, 2009
    Inventor: Robert B. CALHOUN
  • Publication number: 20080279046
    Abstract: A gunshot location system computes candidate gunshot locations [314] from angle-of-arrival information [304, 308] and time-of-arrival information [312] provided by acoustic sensors [300, 302]. In addition to an angle, each sensor calculates an angular uncertainty [306, 310] from impulses received at four or more microphones having rotational symmetry. An intersection of one or more time-of-arrival hyperbolas with one or more angle-of-arrival beams [322] is used to determine a candidate gunshot location. In simple environments, a location can be confirmed with just two sensors allowing sensor density to be significantly reduced, while in complex environments including reflections, blocking, and interfering acoustic events, the additional angle-of-arrival information improves location accuracy and confidence, allowing elimination of candidate locations inconsistent with the combined time-of-arrival and angle-of-arrival information.
    Type: Application
    Filed: July 11, 2008
    Publication date: November 13, 2008
    Inventors: Robert L. Showen, Robert B. Calhoun, Jason W. Dunham
  • Patent number: 7411865
    Abstract: A system and method for archiving and retrieving information from an array of remote sensors. In a preferred embodiment the invention is incorporated in a gunshot detection and location system to preserve audio information surrounding a gunshot event for later review or analysis. In a preferred embodiment the system includes a plurality of acoustic sensors deployed in an array, a computer for processing gunshot information from the sensors, and a mass storage device for temporary archival of audio information. When a gunshot event is detected, the location of the audio information of the data within the spool is stored in an index to facilitate later retrieval of the information.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: August 12, 2008
    Assignee: Shotspotter, Inc.
    Inventor: Robert B. Calhoun
  • Publication number: 20080084788
    Abstract: A gunshot location system computes candidate gunshot locations [314] from angle-of-arrival information [304, 308] and time-of-arrival information [312] provided by acoustic sensors [300, 302]. In addition to an angle, each sensor calculates an angular uncertainty [306, 310] from impulses received at four or more microphones having rotational symmetry. An intersection of one or more time-of-arrival hyperbolas with one or more angle-of-arrival beams [322] is used to determine a candidate gunshot location. In simple environments, a location can be confirmed with just two sensors allowing sensor density to be significantly reduced, while in complex environments including reflections, blocking, and interfering acoustic events, the additional angle-of-arrival information improves location accuracy and confidence, allowing elimination of candidate locations inconsistent with the combined time-of-arrival and angle-of-arrival information.
    Type: Application
    Filed: October 10, 2006
    Publication date: April 10, 2008
    Inventors: Robert L. Showen, Robert B. Calhoun, Jason W. Dunham