Patents by Inventor Robert B. Dooley

Robert B. Dooley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7730839
    Abstract: An article and a process are provided for reducing the shear stress on an interface of a structural member in intimate contact with a compressive load. The article is in the form of a wedge that is forcibly placed against the sidewall of one end or both ends of the structural member. The wedge may take the form of a ring that can be placed on the inside or outside surface of a hollow cylindrical structural member. The process of forcibly placing a wedge against the sidewall at one or both ends of the structural member produces a transverse compressive stress upon the sidewall. The transverse compressive stress upon the sidewall attenuates the tendency of said sidewall to deflect when the structural member is subjected to a compressive load. A reduction in the deflection of the sidewall reduces the shear stress generated proximal to the interface of the structural member in intimate contact with a compressive load and increases the structural member load bearing capacity.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: June 8, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: James M. Bender, James M. Sands, Robert B. Dooley
  • Patent number: 7083140
    Abstract: A method and structure for a full-bore artillery projectile fin deployment device comprising a projectile stabilization fin comprising an aperture and a movable pawl; a rod comprising a head portion and a shaft portion terminating with a beveled tip configured for engaging the pawl; a tailboom configured for housing the fin, wherein the tailboom comprises a hollow bore configured for receiving the rod; a pin slotted through the aperture and attached to the tailboom; and a bias member adjacent to the head portion of the rod. The rod is slotted to simultaneously engage a plurality of fins. The tailboom comprises a forward end and a rearward end and a slot configured for permitting the fin to articulate out of the tailboom, and wherein the tailboom connects to a projectile. Additionally, the power source for the device is the naturally occurring launch accelerations.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: August 1, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Robert B. Dooley
  • Patent number: 6609420
    Abstract: The invention features a modified catch tube component capable of performing the function of the conventional catch tube and the conventional MEM simultaneously. The catch tube will also feature a capability to accept modular units of mass for adjusting the available angular momentum (of the spinning catch tube) as well as to incrementally adjust inertial resistance for controlling post-impact translational motion. The safety and performance enhancements of the modified spinner are achieved by the above mentioned integration of the MEM with the catch tube. This invention will eliminate MEM free flight and prevent excessively soft, or excessively hard projectile impacts. Equipment such as rails and wheel sets are used to assure that the motion of the catch tube is constrained to translation and to rotation. The invention contrasts conventional spinners in that the motion of a conventional catch tube is limited to rotation only and the MEM to translation and rotation.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: August 26, 2003
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Robert B. Dooley
  • Publication number: 20030037609
    Abstract: The invention features a modified catch tube component capable of performing the function of the conventional catch tube and the conventional MEM simultaneously. The catch tube will also feature a capability to accept modular units of mass for adjusting the available angular momentum (of the spinning catch tube) as well as to incrementally adjust inertial resistance for controlling post-impact translational motion. The safety and performance enhancements of the modified spinner are achieved by the above mentioned integration of the MEM with the catch tube. This invention will eliminate MEM free flight and prevent excessively soft, or excessively hard projectile impacts. Equipment such as rails and wheel sets are used to assure that the motion of the catch tube is constrained to translation and to rotation. The invention contrasts conventional spinners in that the motion of a conventional catch tube is limited to rotation only and the MEM to translation and rotation.
    Type: Application
    Filed: April 23, 2001
    Publication date: February 27, 2003
    Inventor: Robert B. Dooley