Patents by Inventor Robert B. Laughlin

Robert B. Laughlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10094219
    Abstract: Efficient energy storage is provided by using a working fluid flowing in a closed cycle including a ganged compressor and turbine, and capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. This system can operate as a heat engine by transferring heat from the hot side to the cold side to mechanically drive the turbine. The system can also operate as a refrigerator by mechanically driving the compressor to transfer heat from the cold side to the hot side. Heat exchange between the working fluid of the system and the heat storage fluids occurs in counter-flow heat exchangers. In a preferred approach, molten salt is the hot side heat storage fluid and water is the cold side heat storage fluid.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: October 9, 2018
    Assignee: X Development LLC
    Inventor: Robert B. Laughlin
  • Patent number: 10012448
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output. Systems of the present disclosure can employ solar heating for improved storage efficiency.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: July 3, 2018
    Assignee: X Development LLC
    Inventors: Robert B. Laughlin, Philippe Larochelle, Nicholas Cizek
  • Patent number: 9932830
    Abstract: Efficient energy storage is provided by using a working fluid flowing in a closed cycle including a ganged compressor and turbine, and capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. This system can operate as a heat engine by transferring heat from the hot side to the cold side to mechanically drive the turbine. The system can also operate as a refrigerator by mechanically driving the compressor to transfer heat from the cold side to the hot side. Heat exchange between the working fluid of the system and the heat storage fluids occurs in counter-flow heat exchangers. In a preferred approach, molten salt is the hot side heat storage fluid and water is the cold side heat storage fluid.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: April 3, 2018
    Assignee: X Development LLC
    Inventor: Robert B. Laughlin
  • Publication number: 20170321967
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output. Systems of the present disclosure can employ solar heating for improved storage efficiency.
    Type: Application
    Filed: February 23, 2017
    Publication date: November 9, 2017
    Inventors: Robert B. Laughlin, Philippe Larochelle, Nicholas Cizek
  • Publication number: 20170159500
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output. Systems of the present disclosure can employ solar heating for improved storage efficiency.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 8, 2017
    Inventors: Robert B. Laughlin, Philippe Larochelle, Nicholas Cizek
  • Publication number: 20170159499
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output. Systems of the present disclosure can employ solar heating for improved storage efficiency.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 8, 2017
    Inventors: Robert B. Laughlin, Philippe Larochelle, Nicholas Cizek
  • Publication number: 20170159496
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output. Systems of the present disclosure can employ solar heating for improved storage efficiency.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 8, 2017
    Inventors: Robert B. Laughlin, Philippe Larochelle, Nicholas Cizek
  • Publication number: 20170159497
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output. Systems of the present disclosure can employ solar heating for improved storage efficiency.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 8, 2017
    Inventors: Robert B. Laughlin, Philippe Larochelle, Nicholas Cizek
  • Publication number: 20170159495
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output. Systems of the present disclosure can employ solar heating for improved storage efficiency.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 8, 2017
    Inventors: Robert B. Laughlin, Philippe Larochelle, Nicholas Cizek
  • Publication number: 20170159498
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output. Systems of the present disclosure can employ solar heating for improved storage efficiency.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 8, 2017
    Inventors: Robert B. Laughlin, Philippe Larochelle, Nicholas Cizek
  • Publication number: 20160343481
    Abstract: Control of electrical conductivity is provided via electrically conductive magnetic domain walls between magnetic domains. The magnetic domains are identical except for their magnetic configuration. Altering a configuration of the magnetic domains (e.g., by thermal treatment, application of a magnetic field, etc.) can alter the electrical resistance of a device. Such devices can be used as non-volatile information storage devices or as sensors.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: Yue Ma, Yongtao Cui, Kentaro Ueda, Jun Fujioka, Yoshinori Tokura, Zhixun Shen, Robert B. Laughlin
  • Publication number: 20160298455
    Abstract: Efficient energy storage is provided by using a working fluid flowing in a closed cycle including a ganged compressor and turbine, and capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. This system can operate as a heat engine by transferring heat from the hot side to the cold side to mechanically drive the turbine. The system can also operate as a refrigerator by mechanically driving the compressor to transfer heat from the cold side to the hot side. Heat exchange between the working fluid of the system and the heat storage fluids occurs in counter-flow heat exchangers. In a preferred approach, molten salt is the hot side heat storage fluid and water is the cold side heat storage fluid.
    Type: Application
    Filed: March 4, 2011
    Publication date: October 13, 2016
    Inventor: Robert B. Laughlin
  • Publication number: 20160298495
    Abstract: Efficient energy storage is provided by using a working fluid flowing in a closed cycle including a ganged compressor and turbine, and capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. This system can operate as a heat engine by transferring heat from the hot side to the cold side to mechanically drive the turbine. The system can also operate as a refrigerator by mechanically driving the compressor to transfer heat from the cold side to the hot side. Heat exchange between the working fluid of the system and the heat storage fluids occurs in counter-flow heat exchangers. In a preferred approach, molten salt is the hot side heat storage fluid and water is the cold side heat storage fluid.
    Type: Application
    Filed: August 12, 2013
    Publication date: October 13, 2016
    Applicant: GigaWatt Day Storage Systems, Inc.
    Inventor: Robert B. LAUGHLIN
  • Publication number: 20150260463
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output. Systems of the present disclosure can employ solar heating for improved storage efficiency.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 17, 2015
    Inventors: Robert B. Laughlin, Philippe Larochelle, Nicholas Cizek