Patents by Inventor Robert B. Ogle, Jr.

Robert B. Ogle, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7964905
    Abstract: The invention provides core stacks for flash memory with an anti-reflective interpoly dielectric. Instead of requiring an anti-reflective coating at the top of the a stack, the present invention uses the interpoly layer as an anti-reflective coating in conjunction with a transmissive second polymer layer. Light is transmitted through the transmissive second polymer layer to the anti-reflective interpoly dielectric layer. The transmissive second polymer layer is formed from an amorphous silicon or polysilicon. Silicon oxynitride (SiON), as formed in the present invention, having a good dielectric constant K, is tailored in its index of refraction and in its thickness for utilization as both a good interpoly material and an anti-reflective coating.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: June 21, 2011
    Assignee: Spansion LLC.
    Inventors: Robert B. Ogle, Jr., Marina V. Plat, Mark T. Ramsbey
  • Patent number: 7026211
    Abstract: A semiconductor component having smooth, void-free conductive layers and a method for manufacturing the semiconductor component. Surface features such as gate structures are formed on a semiconductor substrate. A layer of insulating material is formed on the gate structures and a layer of polysilicon is formed on the layer of insulating material. The layer of polysilicon is annealed in a hydrogen ambient to redistribute the silicon atoms of the polysilicon layer. Redistribution of the atoms fills voids that may be present in the layer of polysilicon and smoothes the surface of the layer of polysilicon. Another layer of polysilicon is formed over the annealed layer of polysilicon. This polysilicon layer is annealed in a hydrogen ambient to redistribute the silicon atoms and smooth the surface of the polysilicon layer, thereby forming a subsequently annealed polysilicon layer. Control gate structures are formed from the subsequently annealed polysilicon layer.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: April 11, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Rinji Sugino, Joong S. Jeon, Robert B. Ogle, Jr.
  • Patent number: 6992370
    Abstract: According to one embodiment, a memory cell structure comprises a semiconductor substrate, a first silicon oxide layer situated over the semiconductor substrate, a charge storing layer situated over the first silicon oxide layer, a second silicon oxide layer situated over the charge storing layer, and a gate layer situated over the second silicon oxide layer. In the exemplary embodiment, the charge storing layer comprises silicon nitride having reduced hydrogen content, e.g., in the range of about 0 to 0.5 atomic percent. As a result, the reduced hydrogen content reduces the charge loss in the charge storing layer. The reduced charge loss in the charge storing layer has the benefit of reducing threshold voltage shifts, programming data loss, and programming capability loss in the memory device, thereby improving memory device performance.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 31, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: George J. Kluth, Robert B. Clark-Phelps, Joong S. Jeon, Huicai Zhong, Arvind Halliyal, Mark T. Ramsbey, Robert B. Ogle, Jr., Kuo T. Chang, Wenmei Li
  • Patent number: 6798002
    Abstract: A dual gate semiconductor device, such as a flash memory semiconductor device, whose plurality of dual gate sidewall spacer structure is formed by a first and second anti-reflection fabrication process. The sidewall spacers of the dual transistor gate structures in the core memory region are left coated with the second anti-reflective coating material, after being used for gate patterning, to act as sidewall spacers for use in subsequent ion implant and salicidation fabrication steps. The second anti-reflective coating material is selected from a material group such as silicon oxynitride (SiON), silicon nitride (Si3N4), and silicon germanium (SiGe), or other anti-reflective coating material having optical properties and that are compatible with the subsequent implant and salicidation steps.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 28, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert B. Ogle, Jr., Tuan D. Pham, Mark T. Ramsbey
  • Patent number: 6716702
    Abstract: A flash memory structure and its fabrication process, whereby stacks, of a first poly-crystalline silicon material or an amorphous silicon material (polysilicon), are processed for formation of a pre-interpoly dielectric treatment layer over the first polysilicon material. The pre-interpoly dielectric treatment layer being a solid material formed by a chemical reaction formed for purposes of improving the reliability of an interpoly dielectric member and results in changing the capacitor coupling ratio of the flash memory element and allows the use of new power supply and programming voltages. The pre-interpoly dielectric treatment layer is formed by exposing the polysilicon stacks to a selected one of at least three ambient reagent gases. The selected gaseous ambient and exposure of the polysilicon stacks being performed in a fabrication tool such as a batch furnace, a single wafer rapid thermal anneal tool, or a plasma chamber.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: April 6, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert B. Ogle, Jr., Arvind Halliyal
  • Patent number: 6512264
    Abstract: A flash memory structure and its fabrication process, whereby stacks, of a first poly-crystalline silicon material or an amorphous silicon material (polysilicon), are processed for formation of a pre-interpoly dielectric treatment layer over the first polysilicon material. The pre-interpoly dielectric treatment layer being a solid material formed by a chemical reaction formed for purposes of improving the reliability of an interpoly dielectric member and results in changing the capacitor coupling ratio of the flash memory element and allows the use of new power supply and programming voltages. The pre-interpoly dielectric treatment layer is formed by exposing the polysilicon stacks to a selected one of at least three ambient reagent gases. The selected gaseous ambient and exposure of the polysilicon stacks being performed in a fabrication tool such as a batch furnace, a single wafer rapid thermal anneal tool, or a plasma chamber.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: January 28, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert B. Ogle, Jr., Arvind Halliyal
  • Patent number: 6355933
    Abstract: Damaging forming deposits and etching is reduced in an ion source by introducing an oxygenated gas during operation of the ion source. Embodiments include an ion source in fluid communication with a source of oxygenated gas and introducing about 1% to about 10% of carbondioxide as the oxygenated gas together with a feed material.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: March 12, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nicholas H. Tripsas, Robert B. Ogle, Jr.
  • Patent number: 6306777
    Abstract: A flash memory structure and fabrication process whereby stacks of a first poly-crystalline or of an amorphous silicon material (polysilicon), having a bottom layer member of an interpoly dielectric stack, are processed for formation of a post-treatment layer over the bottom interpoly dielectric layer member. The post-treatment layer is essentially a solid material formed by a chemical reaction for purposes of improving the reliability of an interpoly dielectric stack and results in changes to the capacitor coupling ratio of the flash memory element and allows the use of new power supply and programming voltages. The post-treatment layer is formed by exposing the polysilicon stacks with the bottom interpoly dielectric layer member to a selected one of at least three ambient reagent gases. The selected ambient reagent gases and exposure of the semiconductor structure being performed in either a batch furnace, a single wafer rapid thermal anneal tool, or a plasma chamber.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: October 23, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert B. Ogle, Jr., Arvind Halliyal
  • Patent number: 6278166
    Abstract: The present invention provides a MOS structure and fabrication process for fabricating the substrate structure whereby a thin layer of silicon oxynitride, acting as a reaction barrier layer, and a tantalum pentoxide layer are formed in the gate region for controlling induction of electric charge in the gate region and thereby control the flow of current through the device. The high dielectric characteristic of the tantalum pentoxide facilitates blocking the flow of current in accordance with the applied voltage, and which in an off-state of the device, minimizes the gate leakage current. The silicon oxynitride barrier is formed by using a pre-deposition process of annealing the silicon substrate surface in a nitric oxide (NO) environment. The anneal may be a rapid thermal anneal (RTA) process for 10 seconds to 5 minutes at 400° C. to 1000° C. in the nitric oxide NO ambient. The annealing process produces the thin silicon oxynitride layer needed for depositing the tantalum pentoxide layer.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: August 21, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Robert B. Ogle, Jr.