Patents by Inventor Robert B. Uselton

Robert B. Uselton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11768022
    Abstract: A method of initiating a low-energy cooling mode using a controller of an HVAC system includes measuring a temperature of ambient air proximal to a condenser coil and determining whether the temperature of the ambient air proximal the condenser coil is less than a temperature threshold. If the temperature of the ambient air is less than the temperature threshold, the HVAC system is configured to operate in a low-energy cooling mode. In the low-energy cooling mode, the controller opens a first bypass valve to allow a refrigerant to bypass a compressor and the compressor is powered off. The HVAC system is operated until a cooling demand has been met.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: September 26, 2023
    Assignee: Lennox Industries Inc.
    Inventors: Carl T. Crawford, Robert B. Uselton
  • Publication number: 20220325931
    Abstract: A method of initiating a low-energy cooling mode using a controller of an HVAC system includes measuring a temperature of ambient air proximal to a condenser coil and determining whether the temperature of the ambient air proximal the condenser coil is less than a temperature threshold. If the temperature of the ambient air is less than the temperature threshold, the HVAC system is configured to operate in a low-energy cooling mode. In the low-energy cooling mode, the controller opens a first bypass valve to allow a refrigerant to bypass a compressor and the compressor is powered off. The HVAC system is operated until a cooling demand has been met.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Applicant: Lennox Industries Inc.
    Inventors: Carl T. CRAWFORD, Robert B. USELTON
  • Patent number: 11402138
    Abstract: A method of initiating a low-energy cooling mode using a controller of an HVAC system includes measuring a temperature of ambient air proximal to a condenser coil and determining whether the temperature of the ambient air proximal the condenser coil is less than a temperature threshold. If the temperature of the ambient air is less than the temperature threshold, the HVAC system is configured to operate in a low-energy cooling mode. In the low-energy cooling mode, the controller opens a first bypass valve to allow a refrigerant to bypass a compressor and the compressor is powered off. The HVAC system is operated until a cooling demand has been met.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: August 2, 2022
    Assignee: Lennox Industries Inc.
    Inventors: Carl T. Crawford, Robert B. Uselton
  • Patent number: 11402156
    Abstract: A heat exchanger includes a plurality of conduits that extend between a first endplate and a second endplate. A first manifold is coupled to the first endplate to couple the first manifold to first ends of the plurality of conduits. An inlet is coupled to the first manifold to direct a first fluid into the first manifold and at least one baffle is disposed within the first manifold to form a first cavity and a second cavity. The at least one baffle of the first manifold is configured to direct the first fluid from the inlet to a first conduit of the plurality of conduits. A second manifold is coupled to the second endplate to couple the second manifold to second ends of the plurality of conduits and at least one baffle is disposed within the second manifold to form a fourth cavity and a fifth cavity.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: August 2, 2022
    Assignee: Lennox Industries Inc.
    Inventor: Robert B. Uselton
  • Patent number: 11397017
    Abstract: A stub pipe housing and a method for installing a stub pipe housing in a heating, ventilation, and air conditioning (“HVAC”) system, the stub pipe housing comprising a first end for sealed contact with an external surface of a cabinet in the HVAC system and a non-permeable material extending to a second end for sealed contact with an external pipe. Sealed contact between the first end and the cabinet, sealed contact between the second end and the external surface, and the non-permeable material ensures any fluid escaping the connection between the stub pipe and the external pipe is directed to the cabinet. The stub pipe housing supports the connection using resilient material, rigid material with compliant seals or some combination. Fluids are directed to flow through the stub pipe opening in the cabinet or directed to flow through other openings.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: July 26, 2022
    Assignee: Lennox Industries Inc.
    Inventor: Robert B. Uselton
  • Patent number: 11378313
    Abstract: A refrigerant detector testing system according to aspects of the disclosure includes a metering orifice formed in a suction line that is disposed between an evaporator coil and a compressor, a valve fluidly coupled to the metering orifice, a connecting tube fluidly coupled to the valve on a side opposite the metering orifice, a mixing device having an input orifice fluidly coupled to the connecting tube. In some embodiments, the mixing device includes an air intake disposed proximate the input orifice, a throttling portion downstream of the input orifice and the air intake, the throttling portion having a reduced cross-sectional area, and a diffuser section positioned downstream of the throttling portion, the diffuser section having an output orifice. According to aspects of the disclosure, a refrigerant detector fluidly exposed to the output orifice.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: July 5, 2022
    Assignee: Lennox Industries Inc.
    Inventors: Rakesh Goel, Robert B. Uselton, Eric Berg, Mark Olsen
  • Patent number: 11255580
    Abstract: A system includes a first heat exchanger, a flash tank, a first compressor, a condenser, a second heat exchanger, and a second compressor. The first heat exchanger removes heat from carbon dioxide refrigerant. The flash tank stores the carbon dioxide refrigerant from the first heat exchanger. The first compressor compresses the carbon dioxide refrigerant and sends the compressed carbon dioxide refrigerant to the first heat exchanger. The condenser removes heat from a second refrigerant. The second heat exchanger receives the second refrigerant from the condenser. The second heat exchanger further removes heat from the carbon dioxide refrigerant stored in the flash tank. The second compressor compresses the second refrigerant from the heat exchanger. The second compressor sends the second refrigerant to the condenser.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: February 22, 2022
    Assignee: Lennox Industries Inc.
    Inventor: Robert B. Uselton
  • Publication number: 20220026117
    Abstract: A subcooling controller includes a sensor and a processor. The sensor measures one or more of a temperature external to a first heat exchanger that removes heat from carbon dioxide refrigerant, a temperature of the carbon dioxide refrigerant, and a pressure of the carbon dioxide refrigerant. The processor determines that one or more of the measured temperature external to the first heat exchanger, the temperature of the carbon dioxide refrigerant, and the pressure of the carbon dioxide refrigerant is above a threshold and in response to that determination, activates a subcooling system. The subcooling system includes a condenser, a second heat exchanger, and a compressor. The condenser removes heat from a second refrigerant. The second heat removes heat from the carbon dioxide refrigerant stored in a flash tank. The compressor compresses the second refrigerant from the second heat exchanger and sends the second refrigerant to the condenser.
    Type: Application
    Filed: October 8, 2021
    Publication date: January 27, 2022
    Inventor: Robert B. Uselton
  • Patent number: 11175073
    Abstract: A subcooling controller includes a sensor and a processor. The sensor measures one or more of a temperature external to a first heat exchanger that removes heat from carbon dioxide refrigerant, a temperature of the carbon dioxide refrigerant, and a pressure of the carbon dioxide refrigerant. The processor determines that one or more of the measured temperature external to the first heat exchanger, the temperature of the carbon dioxide refrigerant, and the pressure of the carbon dioxide refrigerant is above a threshold and in response to that determination, activates a subcooling system. The subcooling system includes a condenser, a second heat exchanger, and a compressor. The condenser removes heat from a second refrigerant. The second heat removes heat from the carbon dioxide refrigerant stored in a flash tank. The compressor compresses the second refrigerant from the second heat exchanger and sends the second refrigerant to the condenser.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: November 16, 2021
    Assignee: Lennox Industries Inc.
    Inventor: Robert B. Uselton
  • Patent number: 11143417
    Abstract: An apparatus that includes a refrigeration circuit that includes an evaporator, a first condenser and a compressor. The apparatus includes a refrigerant-water heat exchanger that includes a second condenser fluidly coupled to the refrigeration circuit. A control valve is operatively connected to the refrigeration circuit to direct flow of refrigerant through at least one of the first condenser during a dehumidification mode and the second condenser during a water heating mode. A damper is disposed on an upwind side of the evaporator, the damper being operable to reduce airflow across the evaporator during a ventilation mode.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: October 12, 2021
    Assignee: Lennox Industries Inc.
    Inventor: Robert B. Uselton
  • Publication number: 20210088242
    Abstract: A stub pipe housing and a method for installing a stub pipe housing in a heating, ventilation, and air conditioning (“HVAC”) system, the stub pipe housing comprising a first end for sealed contact with an external surface of a cabinet in the HVAC system and a non-permeable material extending to a second end for sealed contact with an external pipe. Sealed contact between the first end and the cabinet, sealed contact between the second end and the external surface, and the non-permeable material ensures any fluid escaping the connection between the stub pipe and the external pipe is directed to the cabinet. The stub pipe housing supports the connection using resilient material, rigid material with compliant seals or some combination. Fluids are directed to flow through the stub pipe opening in the cabinet or directed to flow through other openings.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 25, 2021
    Inventor: Robert B. Uselton
  • Publication number: 20210063025
    Abstract: A method of protecting a single-stage furnace in a multi-zone system includes monitoring a temperature of each zone of a plurality of zones, determining if the temperature of at least one zone of the plurality of zones is less than a threshold temperature, powering on the HVAC system to satisfy a heating demand of the zone having a temperature less than the threshold temperature, monitoring an outlet temperature of the single-stage furnace, determining if the outlet temperature is greater than an outlet temperature threshold, and responsive to a determination that the outlet temperature is greater than the outlet temperature threshold, modulating a gas valve to reduce a flow of gas to the single-stage furnace.
    Type: Application
    Filed: August 30, 2019
    Publication date: March 4, 2021
    Applicant: Lennox Industries Inc.
    Inventors: Robert B. USELTON, Matthew S. RIEPENHOFF
  • Publication number: 20200355420
    Abstract: A refrigerant detector testing system according to aspects of the disclosure includes a metering orifice formed in a suction line that is disposed between an evaporator coil and a compressor, a valve fluidly coupled to the metering orifice, a connecting tube fluidly coupled to the valve on a side opposite the metering orifice, a mixing device having an input orifice fluidly coupled to the connecting tube. In some embodiments, the mixing device includes an air intake disposed proximate the input orifice, a throttling portion downstream of the input orifice and the air intake, the throttling portion having a reduced cross-sectional area, and a diffuser section positioned downstream of the throttling portion, the diffuser section having an output orifice. According to aspects of the disclosure, a refrigerant detector fluidly exposed to the output orifice.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Applicant: Lennox Industries Inc.
    Inventors: Rakesh Goel, Robert B. USELTON, Eric BERG, Mark OLSEN
  • Publication number: 20200309460
    Abstract: A heat exchanger includes a plurality of conduits that extend between a first endplate and a second endplate. A first manifold is coupled to the first endplate to couple the first manifold to first ends of the plurality of conduits. An inlet is coupled to the first manifold to direct a first fluid into the first manifold and at least one baffle is disposed within the first manifold to form a first cavity and a second cavity. The at least one baffle of the first manifold is configured to direct the first fluid from the inlet to a first conduit of the plurality of conduits. A second manifold is coupled to the second endplate to couple the second manifold to second ends of the plurality of conduits and at least one baffle is disposed within the second manifold to form a fourth cavity and a fifth cavity.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Applicant: Lennox Industries Inc.
    Inventor: Robert B. USELTON
  • Publication number: 20200309384
    Abstract: An apparatus that includes a refrigeration circuit that includes an evaporator, a first condenser and a compressor. The apparatus includes a refrigerant-water heat exchanger that includes a second condenser fluidly coupled to the refrigeration circuit. A control valve is operatively connected to the refrigeration circuit to direct flow of refrigerant through at least one of the first condenser during a dehumidification mode and the second condenser during a water heating mode. A damper is disposed on an upwind side of the evaporator, the damper being operable to reduce airflow across the evaporator during a ventilation mode.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Applicant: Lennox Industries Inc.
    Inventor: Robert B. USELTON
  • Publication number: 20200300523
    Abstract: A method of initiating a low-energy cooling mode using a controller of an HVAC system includes measuring a temperature of ambient air proximal to a condenser coil and determining whether the temperature of the ambient air proximal the condenser coil is less than a temperature threshold. If the temperature of the ambient air is less than the temperature threshold, the HVAC system is configured to operate in a low-energy cooling mode. In the low-energy cooling mode, the controller opens a first bypass valve to allow a refrigerant to bypass a compressor and the compressor is powered off. The HVAC system is operated until a cooling demand has been met.
    Type: Application
    Filed: June 12, 2020
    Publication date: September 24, 2020
    Applicant: Lennox Industries Inc.
    Inventors: Carl T. CRAWFORD, Robert B. USELTON
  • Patent number: 10760838
    Abstract: A refrigerant detector testing system according to aspects of the disclosure includes a metering orifice formed in a suction line that is disposed between an evaporator coil and a compressor, a valve fluidly coupled to the metering orifice, a connecting tube fluidly coupled to the valve on a side opposite the metering orifice, a mixing device having an input orifice fluidly coupled to the connecting tube. In some embodiments, the mixing device includes an air intake disposed proximate the input orifice, a throttling portion downstream of the input orifice and the air intake, the throttling portion having a reduced cross-sectional area, and a diffuser section positioned downstream of the throttling portion, the diffuser section having an output orifice. According to aspects of the disclosure, a refrigerant detector fluidly exposed to the output orifice.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 1, 2020
    Assignee: Lennox Industries Inc.
    Inventors: Rakesh Goel, Robert B. Uselton, Eric Berg, Mark Olsen
  • Patent number: 10760813
    Abstract: A system comprising a furnace, an impeller, and a controller. The impeller directs air into an environment through the furnace. The controller receives calls to heat the environment or circulate air in the environment. In response to receiving a call to heat the environment, the controller activates the furnace and the impeller such that the impeller draws a first amount of power and turns in a first direction causing air to be impelled from the impeller through the furnace into the environment. In response to receiving a call to circulate air in the environment, the controller activates the impeller such that the impeller draws a second amount of power and turns in a second direction causing air to be impelled from the impeller into the environment, wherein the second amount of power is less than the first amount of power and the second direction is opposite the first direction.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: September 1, 2020
    Assignee: Lennox Industries Inc.
    Inventors: Robert B. Uselton, Ian James Burmania
  • Patent number: 10724744
    Abstract: An apparatus that includes a refrigeration circuit that includes an evaporator, a first condenser and a compressor. The apparatus includes a refrigerant-water heat exchanger that includes a second condenser fluidly coupled to the refrigeration circuit. A control valve is operatively connected to the refrigeration circuit to direct flow of refrigerant through at least one of the first condenser during a dehumidification mode and the second condenser during a water heating mode. A damper is disposed on an upwind side of the evaporator, the damper being operable to reduce airflow across the evaporator during a ventilation mode.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: July 28, 2020
    Assignee: Lennox Industries Inc.
    Inventor: Robert B. Uselton
  • Patent number: 10712095
    Abstract: A heat exchanger includes a plurality of conduits that extend between a first endplate and a second endplate. A first manifold is coupled to the first endplate to couple the first manifold to first ends of the plurality of conduits. An inlet is coupled to the first manifold to direct a first fluid into the first manifold and at least one baffle is disposed within the first manifold to form a first cavity and a second cavity. The at least one baffle of the first manifold is configured to direct the first fluid from the inlet to a first conduit of the plurality of conduits. A second manifold is coupled to the second endplate to couple the second manifold to second ends of the plurality of conduits and at least one baffle is disposed within the second manifold to form a fourth cavity and a fifth cavity.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: July 14, 2020
    Assignee: Lennox Industries Inc.
    Inventor: Robert B. Uselton