Patents by Inventor Robert B. Vopat

Robert B. Vopat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240064888
    Abstract: An apparatus may include a resonator chamber, arranged in a vacuum enclosure; an RF electrode assembly, arranged within the vacuum enclosure; and a resonator coil, disposed within the resonator chamber, the resonator coil having a high voltage end, directly connected to at least one RF electrode of the RF electrode assembly.
    Type: Application
    Filed: November 4, 2022
    Publication date: February 22, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Robert B. Vopat, Charles T. Carlson
  • Patent number: 11895766
    Abstract: Embodiments herein are directed to a linear accelerator assembly for an ion implanter. In some embodiments, a LINAC may include a coil resonator and a plurality of drift tubes coupled to the coil resonator by a set of flexible leads.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: February 6, 2024
    Assignee: Applied Materials, Inc.
    Inventors: David T. Blahnik, Charles T. Carlson, Robert B. Vopat, Frank Sinclair, Paul J. Murphy, Krag R. Senior
  • Patent number: 11710617
    Abstract: Embodiments herein are directed to a resonator for an ion implanter. In some embodiments, a resonator may include a housing, and a first coil and a second coil partially disposed within the housing. Each of the first and second coils may include a first end including an opening for receiving an ion beam, and a central section extending helically about a central axis, wherein the central axis is parallel to a beamline of the ion beam, and wherein an inner side of the central section has a flattened surface.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: July 25, 2023
    Assignee: APPLIED Materials, Inc.
    Inventors: Costel Biloiu, Michael Honan, Robert B. Vopat, David Blahnik, Charles T. Carlson, Frank Sinclair, Paul Murphy
  • Publication number: 20230120769
    Abstract: Embodiments herein are directed to a linear accelerator assembly for an ion implanter. In some embodiments, a LINAC may include a coil resonator and a plurality of drift tubes coupled to the coil resonator by a set of flexible leads.
    Type: Application
    Filed: October 15, 2021
    Publication date: April 20, 2023
    Applicant: Applied Materials, Inc.
    Inventors: David T. Blahnik, Charles T. Carlson, Robert B. Vopat, Frank Sinclair, Paul J. Murphy, Krag R. Senior
  • Publication number: 20230119010
    Abstract: Embodiments herein are directed to a linear accelerator assembly for an ion implanter, wherein the linear accelerator includes a jacketed resonator coil. In some embodiments, a linear accelerator assembly may include a first fluid conduit and a coil resonator coupled to the first fluid conduit, wherein the coil resonator is operable to receive a first fluid via the first fluid conduit, wherein the coil resonator comprises a first coil conduit adjacent a second coil conduit, and wherein a first fluid channel defined by the first coil conduit is operable to receive the first fluid.
    Type: Application
    Filed: October 20, 2021
    Publication date: April 20, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Robert B. Vopat, Charles T. Carlson
  • Publication number: 20210343500
    Abstract: Embodiments herein are directed to a resonator for an ion implanter. In some embodiments, a resonator may include a housing, and a first coil and a second coil partially disposed within the housing. Each of the first and second coils may include a first end including an opening for receiving an ion beam, and a central section extending helically about a central axis, wherein the central axis is parallel to a beamline of the ion beam, and wherein an inner side of the central section has a flattened surface.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Costel Biloiu, Michael Honan, Robert B. Vopat, David Blahnik, Charles T. Carlson, Frank Sinclair, Paul Murphy
  • Patent number: 11094504
    Abstract: Embodiments herein are directed to a resonator for an ion implanter. In some embodiments, a resonator may include a housing, and a first coil and a second coil partially disposed within the housing. Each of the first and second coils may include a first end including an opening for receiving an ion beam, and a central section extending helically about a central axis, wherein the central axis is parallel to a beamline of the ion beam, and wherein an inner side of the central section has a flattened surface.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: August 17, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Costel Biloiu, Michael Honan, Robert B Vopat, David Blahnik, Charles T. Carlson, Frank Sinclair, Paul Murphy
  • Publication number: 20210210307
    Abstract: Embodiments herein are directed to a resonator for an ion implanter. In some embodiments, a resonator may include a housing, and a first coil and a second coil partially disposed within the housing. Each of the first and second coils may include a first end including an opening for receiving an ion beam, and a central section extending helically about a central axis, wherein the central axis is parallel to a beamline of the ion beam, and wherein an inner side of the central section has a flattened surface.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 8, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Costel Biloiu, Michael Honan, Robert B. Vopat, David Blahnik, Charles T. Carlson, Frank Sinclair, Paul Murphy
  • Publication number: 20200386392
    Abstract: A heat exchange arrangement for a light emitting diode (LED) lamp module includes a base portion and a printed circuit board (PCB) portion. The base portion has first and second surfaces, the first surface comprising a plurality of channels. The PCB portion has first and second surfaces, the first surface configured to receive a plurality of LEDs thereon. The second surface of the PCB portion is coupled to the first surface of the base portion. The first surface of the base portion includes a plurality of open channels disposed therein, and the second surface of the PCB portion encloses said plurality of channels when the PCB portion is coupled to the base portion. The plurality of channels form cooling channels forming watertight passages for coolant fluid to flow through.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Robert B. Vopat, Jason M. Schaller, Mitchell DiSanto
  • Patent number: 10586720
    Abstract: Various embodiments of wafer processing systems including batch load lock apparatus with temperature control capability are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: March 10, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: William T. Weaver, Joseph Yudovsky, Jason M. Schaller, Jeffrey C. Blahnik, Robert B. Vopat, Malcolm N. Daniel, Jr., Robert Mitchell
  • Publication number: 20190375105
    Abstract: Electronic device processing systems may include a mainframe housing having a transfer chamber, a first carousel assembly, a second carousel assembly, a first load lock, a second load lock, and a robot adapted to operate in the transfer chamber to exchange substrates between the first and second carousels and the first and second load locks. The robot may include first and second end effectors operable to extend and/or retract simultaneously or sequentially along substantially co-parallel lines of action. Methods and multi-axis robots for transporting substrates are described, as are numerous other aspects.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 12, 2019
    Inventors: William T. Weaver, Malcolm N. Daniel, JR., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman
  • Patent number: 10427303
    Abstract: Electronic device processing systems may include a mainframe housing having a transfer chamber, a first carousel assembly, a second carousel assembly, a first load lock, a second load lock, and a robot adapted to operate in the transfer chamber to exchange substrates between the first and second carousels and the first and second load locks. The robot may include first and second end effectors operable to extend and/or retract simultaneously or sequentially along substantially co-parallel lines of action. Methods and multi-axis robots for transporting substrates are described, as are numerous other aspects.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 1, 2019
    Assignee: Applied Materials, Inc.
    Inventors: William T. Weaver, Malcolm N. Daniel, Jr., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman
  • Publication number: 20190198368
    Abstract: Various embodiments of wafer processing systems including batch load lock apparatus with temperature control capability are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 27, 2019
    Inventors: William T. Weaver, Joseph Yudovsky, Jason M. Schaller, Jeffrey C. Blahnik, Robert B. Vopat, Malcolm N. Daniel, JR., Robert Mitchell
  • Patent number: 10256125
    Abstract: Various embodiments of wafer processing systems including batch load lock apparatus with temperature control capability are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: April 9, 2019
    Assignee: Applied Materials, Inc.
    Inventors: William T. Weaver, Joseph Yudovsky, Jason M. Schaller, Jeffrey C. Blahnik, Robert B. Vopat, Malcolm N. Daniel, Jr., Robert Mitchell
  • Patent number: 9496117
    Abstract: An adjustable mass-resolving slit assembly includes an aperture portion and an actuation portion. The aperture portion includes first and second shield members that define an aperture therebetween for receiving an ion beam during semiconductor processing operations. The actuation portion is coupled to the aperture portion and selectively and independently adjusts the position of the first and second shield members along first and second non-parallel axes. Adjusting the position of the first and second shield members along the first axis adjusts a width of the aperture. Adjusting the position of the first and second shield members along the second axis adjusts a region of the first and second shield members impinged by the ion beam. Methods for using the adjustable mass-resolving slit assembly are also disclosed.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: November 15, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jason M. Schaller, Robert B. Vopat
  • Publication number: 20160284578
    Abstract: Various embodiments of wafer processing systems including batch load lock apparatus with temperature control capability are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: William T. Weaver, Joseph Yudovsky, Jason M. Schaller, Jeffrey C. Blahnik, Robert B. Vopat, Malcolm N. Daniel, JR., Robert Mitchell
  • Patent number: 9378994
    Abstract: Various embodiments of batch load lock apparatus are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Systems including the batch load lock apparatus and methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 28, 2016
    Assignee: Applied Materials, Inc.
    Inventors: William T. Weaver, Joseph Yudovsky, Jason M. Schaller, Jeffrey C. Blahnik, Robert B. Vopat, Malcolm N. Daniel, Jr., Robert Mitchell
  • Patent number: 9281222
    Abstract: A wafer handling system may include upper and lower linked robot arms that may move a wafer along a nonlinear trajectory between chambers of a semiconductor processing system. These features may result in a smaller footprint in which the semiconductor processing system may operate, smaller transfer chambers, smaller openings in process chambers, and smaller slit valves, while maintaining high wafer throughput. In some embodiments, simultaneous fast wafer swaps between two separate chambers, such as load locks and ALD (atomic layer deposition) carousels, may be provided. Methods of wafer handling are also provided, as are other aspects.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: March 8, 2016
    Assignee: Applied Materials, Inc.
    Inventors: William Tyler Weaver, Malcolm N. Daniel, Jr., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman
  • Patent number: 9214369
    Abstract: An apparatus for dynamically adjusting the pitch between substrates in a substrate stack comprises first and second lift portions. The first lift portion supports a first group of the plurality of substrates, and the second lift portion supports a second group of the plurality of substrates. The first and second lift portions are operable to move the first and second groups of substrates in a first direction independently from each other. This independent movement enables the pitch, or spacing, between adjacent substrates to be dynamically adjusted so that an end effector of a robot can be positioned between such adjacent substrates to pick one of the substrates without inadvertently engaging another substrate that is not being picked. Other embodiments are disclosed.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: December 15, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Robert B. Vopat, Jason M. Schaller, Jeffrey Charles Blahnik, Malcolm N. Daniel, Jr.
  • Publication number: 20150206701
    Abstract: An adjustable mass-resolving slit assembly includes an aperture portion and an actuation portion. The aperture portion includes first and second shield members that define an aperture therebetween for receiving an ion beam during semiconductor processing operations. The actuation portion is coupled to the aperture portion and selectively and independently adjusts the position of the first and second shield members along first and second non-parallel axes. Adjusting the position of the first and second shield members along the first axis adjusts a width of the aperture. Adjusting the position of the first and second shield members along the second axis adjusts a region of the first and second shield members impinged by the ion beam. Methods for using the adjustable mass-resolving slit assembly are also disclosed.
    Type: Application
    Filed: January 20, 2014
    Publication date: July 23, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jason M. Schaller, Robert B. Vopat